Abstract:
We give a complete description of small neighborhoods of the closures of lunes of the edges of Steiner minimal trees (Theorem 1.1); to this end, we prove a generalization of a stabilization theorem for embedded locally minimal trees [1]; the case of two such disjoint trees is considered (Theorem 2.2).
Keywords:
Steiner minimal tree, locally minimal tree, lune of an edge of a tree, linear graph, shortest tree.
Citation:
A. O. Ivanov, O. A. S'edina, A. A. Tuzhilin, “The Structure of Minimal Steiner Trees in the Neighborhoods of the Lunes of Their Edges”, Mat. Zametki, 91:3 (2012), 353–370; Math. Notes, 91:3 (2012), 339–353
\Bibitem{IvaSedTuz12}
\by A.~O.~Ivanov, O.~A.~S'edina, A.~A.~Tuzhilin
\paper The Structure of Minimal Steiner Trees in the Neighborhoods of the Lunes of Their Edges
\jour Mat. Zametki
\yr 2012
\vol 91
\issue 3
\pages 353--370
\mathnet{http://mi.mathnet.ru/mzm8533}
\crossref{https://doi.org/10.4213/mzm8533}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201433}
\elib{https://elibrary.ru/item.asp?id=20731493}
\transl
\jour Math. Notes
\yr 2012
\vol 91
\issue 3
\pages 339--353
\crossref{https://doi.org/10.1134/S0001434612030042}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303478900004}
\elib{https://elibrary.ru/item.asp?id=17983894}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860363397}
Linking options:
https://www.mathnet.ru/eng/mzm8533
https://doi.org/10.4213/mzm8533
https://www.mathnet.ru/eng/mzm/v91/i3/p353
This publication is cited in the following 2 articles:
Ivanov A.O. Tuzhilin A.A., “Minimal Networks: a Review”, Advances in Dynamical Systems and Control, Studies in Systems Decision and Control, 69, ed. Sadovnichiy V. Zgurovsky M., Springer Int Publishing Ag, 2016, 43–80
A. O. Ivanov, A. E. Mel'nikova, A. A. Tuzhilin, “Stabilization of a locally minimal forest”, Sb. Math., 205:3 (2014), 387–418