Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 86, Issue 6, Pages 803–818
DOI: https://doi.org/10.4213/mzm8525
(Mi mzm8525)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the Possibility of Strengthening the Lieb–Thirring Inequality

D. S. Barsegyan

M. V. Lomonosov Moscow State University
Full-text PDF (437 kB) Citations (4)
References:
Abstract: In 1976, Lieb and Thirring obtained an upper bound for the square of the norm on $L^2(\mathbb R^2)$ of the sum of the squares of functions from finite orthonormal systems via the sum of the squares of the norms of their gradients. Later, a series of Lieb–Thirring inequalities for orthonormal systems was established by many authors. In the present paper, using the standard theory of functions, we prove Lieb–Thirring inequalities, which have applications in the theory of partial differential equations.
Keywords: Lieb–Thirring inequality, orthonormal system, function theory, Fourier transform, partial differential equation.
Received: 30.05.2009
English version:
Mathematical Notes, 2009, Volume 86, Issue 6, Pages 753–766
DOI: https://doi.org/10.1134/S0001434609110182
Bibliographic databases:
UDC: 517
Language: Russian
Citation: D. S. Barsegyan, “On the Possibility of Strengthening the Lieb–Thirring Inequality”, Mat. Zametki, 86:6 (2009), 803–818; Math. Notes, 86:6 (2009), 753–766
Citation in format AMSBIB
\Bibitem{Bar09}
\by D.~S.~Barsegyan
\paper On the Possibility of Strengthening the Lieb--Thirring Inequality
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 6
\pages 803--818
\mathnet{http://mi.mathnet.ru/mzm8525}
\crossref{https://doi.org/10.4213/mzm8525}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2643449}
\zmath{https://zbmath.org/?q=an:1185.26039}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 6
\pages 753--766
\crossref{https://doi.org/10.1134/S0001434609110182}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273362000018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-73949112083}
Linking options:
  • https://www.mathnet.ru/eng/mzm8525
  • https://doi.org/10.4213/mzm8525
  • https://www.mathnet.ru/eng/mzm/v86/i6/p803
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:594
    Full-text PDF :187
    References:71
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024