Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 86, Issue 3, Pages 429–444
DOI: https://doi.org/10.4213/mzm8502
(Mi mzm8502)
 

This article is cited in 16 scientific papers (total in 16 papers)

Estimates of the Smoothness of Dyadic Orthogonal Wavelets of Daubechies Type

E. A. Rodionov, Yu. A. Farkov

Russian State Geological Prospecting University
References:
Abstract: Suppose that $\omega(\varphi,\,\cdot\,)$ is the dyadic modulus of continuity of a compactly supported function $\varphi$ in $L^2(\mathbb R_+)$ satisfying a scaling equation with $2^n$ coefficients. Denote by $\alpha_\varphi$ the supremum for values of $\alpha>0$ such that the inequality $\omega(\varphi,2^{-j})\le C2^{-\alpha j}$ holds for all $j\in\mathbb N$. For the cases $n=3$ and $n=4$, we study the scaling functions $\varphi$ generating multiresolution analyses in $L^2(\mathbb R_+)$ and the exact values of $\alpha_\varphi$ are calculated for these functions. It is noted that the smoothness of the dyadic orthogonal wavelet in $L^2(\mathbb R_+)$ corresponding to the scaling function $\varphi$ coincides with $\alpha_\varphi$.
Keywords: Daubechies wavelet, multiresolution analysis, the space $L^2(\mathbb R_+)$, Walsh series, binary entire function, Haar function, modulus of continuity, dyadic scaling function.
Received: 23.07.2008
Revised: 20.01.2009
English version:
Mathematical Notes, 2009, Volume 86, Issue 3, Pages 407–421
DOI: https://doi.org/10.1134/S0001434609090144
Bibliographic databases:
UDC: 517.518.3+517.965
Language: Russian
Citation: E. A. Rodionov, Yu. A. Farkov, “Estimates of the Smoothness of Dyadic Orthogonal Wavelets of Daubechies Type”, Mat. Zametki, 86:3 (2009), 429–444; Math. Notes, 86:3 (2009), 407–421
Citation in format AMSBIB
\Bibitem{RodFar09}
\by E.~A.~Rodionov, Yu.~A.~Farkov
\paper Estimates of the Smoothness of Dyadic Orthogonal Wavelets of Daubechies Type
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 3
\pages 429--444
\mathnet{http://mi.mathnet.ru/mzm8502}
\crossref{https://doi.org/10.4213/mzm8502}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2591382}
\zmath{https://zbmath.org/?q=an:1178.42041}
\elib{https://elibrary.ru/item.asp?id=15309472}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 3
\pages 407--421
\crossref{https://doi.org/10.1134/S0001434609090144}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271950700014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76249093699}
Linking options:
  • https://www.mathnet.ru/eng/mzm8502
  • https://doi.org/10.4213/mzm8502
  • https://www.mathnet.ru/eng/mzm/v86/i3/p429
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024