Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 86, Issue 3, Pages 408–420
DOI: https://doi.org/10.4213/mzm8501
(Mi mzm8501)
 

Necessary Conditions for the Weak Generalized Localization of Fourier Series with “Lacunary Sequence of Partial Sums”

O. V. Lifantseva

Moscow State Region University
References:
Abstract: It has been established that, on the subsets $\mathbb{T}^N=[-\pi,\pi]^N$ describing a cross $W$ composed of $N$-dimensional blocks, $W_{x_sx_t}=\Omega_{x_sx_t}\times [-\pi,\pi]^{N-2}$ ($\Omega_{x_sx_t}$ is an open subset of $[-\pi,\pi]^2$) in the classes $L_p(\mathbb{T}^N)$, $p>1$, a weak generalized localization holds, for $N\ge3$, almost everywhere for multiple trigonometric Fourier series when to the rectangular partial sums $S_n(x;f)$ ($x\in\mathbb{T}^N$, $f\in L_p$) of these series corresponds the number $n=(n_1,\dots,n_N)\in\mathbb Z_{+}^{N}$ some components $n_j$ of which are elements of lacunary sequences. In the present paper, we prove a number of statements showing that the structural and geometric characteristics of such subsets are sharp in the sense of the numbers (generating $W$) of the $N$-dimensional blocks $W_{x_sx_t}$ as well as of the structure and geometry of $W_{x_sx_t}$. In particular, it is proved that it is impossible to take an arbitrary measurable two-dimensional set or an open three-dimensional set as the base of the block.
Keywords: multiple trigonometric Fourier series, $n$-block, lacunary sequence, weak generalized localization, measurable set, Euclidean space, rectangular partial sum.
Received: 23.11.2007
Revised: 17.03.2009
English version:
Mathematical Notes, 2009, Volume 86, Issue 3, Pages 373–384
DOI: https://doi.org/10.1134/S0001434609090119
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: O. V. Lifantseva, “Necessary Conditions for the Weak Generalized Localization of Fourier Series with “Lacunary Sequence of Partial Sums””, Mat. Zametki, 86:3 (2009), 408–420; Math. Notes, 86:3 (2009), 373–384
Citation in format AMSBIB
\Bibitem{Lif09}
\by O.~V.~Lifantseva
\paper Necessary Conditions for the Weak Generalized Localization of Fourier Series with ``Lacunary Sequence of Partial Sums''
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 3
\pages 408--420
\mathnet{http://mi.mathnet.ru/mzm8501}
\crossref{https://doi.org/10.4213/mzm8501}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2591380}
\zmath{https://zbmath.org/?q=an:1178.42012}
\elib{https://elibrary.ru/item.asp?id=15306200}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 3
\pages 373--384
\crossref{https://doi.org/10.1134/S0001434609090119}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271950700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76249090325}
Linking options:
  • https://www.mathnet.ru/eng/mzm8501
  • https://doi.org/10.4213/mzm8501
  • https://www.mathnet.ru/eng/mzm/v86/i3/p408
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024