Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 88, Issue 6, Pages 902–910
DOI: https://doi.org/10.4213/mzm8488
(Mi mzm8488)
 

Minimal Involution-Free Nongroup Reduced Twisted Subsets

A. L. Myl'nikov

Institute of Basic Training, Siberian Federal University
References:
Abstract: A subset $K$ of a group $G$ is said to be twisted if $1\in K$ and the element $xy^{-1}x$ lies in $K$ for any $x,y\in K$. We study finite involution-free twisted subsets that are not subgroups but all of whose proper twisted subsets are subgroups.
Keywords: group, subgroup, twisted subset, involution-free subset.
Received: 29.04.2009
English version:
Mathematical Notes, 2010, Volume 88, Issue 6, Pages 860–867
DOI: https://doi.org/10.1134/S000143461011026X
Bibliographic databases:
Document Type: Article
UDC: 512.544
Language: Russian
Citation: A. L. Myl'nikov, “Minimal Involution-Free Nongroup Reduced Twisted Subsets”, Mat. Zametki, 88:6 (2010), 902–910; Math. Notes, 88:6 (2010), 860–867
Citation in format AMSBIB
\Bibitem{Myl10}
\by A.~L.~Myl'nikov
\paper Minimal Involution-Free Nongroup Reduced Twisted Subsets
\jour Mat. Zametki
\yr 2010
\vol 88
\issue 6
\pages 902--910
\mathnet{http://mi.mathnet.ru/mzm8488}
\crossref{https://doi.org/10.4213/mzm8488}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2868413}
\transl
\jour Math. Notes
\yr 2010
\vol 88
\issue 6
\pages 860--867
\crossref{https://doi.org/10.1134/S000143461011026X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288489700026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78651236237}
Linking options:
  • https://www.mathnet.ru/eng/mzm8488
  • https://doi.org/10.4213/mzm8488
  • https://www.mathnet.ru/eng/mzm/v88/i6/p902
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024