Abstract:
We obtain a nontrivial estimate of the variance of the sum of bounded partial quotients appearing in the continued-fraction expansion of a rational number with fixed denominator. As a consequence, we obtain a law of large numbers for the sum of all partial quotients.
Keywords:
law of large numbers, rational number, continued fraction, partial quotient, Euler function, Möbius function, Riemann zeta function.
Citation:
M. G. Rukavishnikova, “The Law of Large Numbers for the Sum of the Partial Quotients of a Rational Number with Fixed Denominator”, Mat. Zametki, 90:3 (2011), 431–444; Math. Notes, 90:3 (2011), 418–430
\Bibitem{Ruk11}
\by M.~G.~Rukavishnikova
\paper The Law of Large Numbers for the Sum of the Partial Quotients of a Rational Number with Fixed Denominator
\jour Mat. Zametki
\yr 2011
\vol 90
\issue 3
\pages 431--444
\mathnet{http://mi.mathnet.ru/mzm8484}
\crossref{https://doi.org/10.4213/mzm8484}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2868371}
\transl
\jour Math. Notes
\yr 2011
\vol 90
\issue 3
\pages 418--430
\crossref{https://doi.org/10.1134/S0001434611090100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296476500010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80155149505}
Linking options:
https://www.mathnet.ru/eng/mzm8484
https://doi.org/10.4213/mzm8484
https://www.mathnet.ru/eng/mzm/v90/i3/p431
This publication is cited in the following 8 articles:
Swee Hong Chan, Igor Pak, “Linear extensions and continued fractions”, European Journal of Combinatorics, 122 (2024), 104018
A. A. Illarionov, “Veroyatnostnye otsenki, svyazannye s teoretiko-chislovymi kvadraturnymi formulami Korobova”, Algebra i analiz, 36:6 (2024), 47–81
Christoph Aistleitner, Bence Borda, Manuel Hauke, “On the distribution of partial quotients of reduced fractions with fixed denominator”, Trans. Amer. Math. Soc., 377:2 (2023), 1371
A. A. Illarionov, “Distribution of Korobov-Hlawka sequences”, Sb. Math., 213:9 (2022), 1222–1249
Radosław Żak, “Finding binary words with a given number of subsequences”, Theoretical Computer Science, 919 (2022), 75
A. A. Illarionov, “A probability estimate for the discrepancy of Korobov lattice points”, Sb. Math., 212:11 (2021), 1571–1587
Moshchevitin N., Murphy B., Shkredov I., “Popular Products and Continued Fractions”, Isr. J. Math., 238:2 (2020), 807–835
A. A. Illarionov, “O raspredelenii tselochislennykh dlin reber poliedrov Kleina”, Dalnevost. matem. zhurn., 15:2 (2015), 214–221