|
This article is cited in 3 scientific papers (total in 3 papers)
On Best Approximations by Analogs of “Proper” and “Improper” Hyperbolic Crosses
N. N. Pustovoitov Moscow State Technical University "MAMI"
Abstract:
The exact approximation orders for the classes $H_q^\Omega$ are calculated for the case in which $\Omega(t)$ contains both power and logarithmic multipliers. For these classes, the exact orders of best approximation by analogs of “improper” hyperbolic crosses are also obtained.
Keywords:
best approximation orders for the classes $H_q^\Omega$, hyperbolic cross, orthowidth, trigonometric polynomial, Nikolskii function class.
Received: 07.05.2009 Revised: 17.02.2011
Citation:
N. N. Pustovoitov, “On Best Approximations by Analogs of “Proper” and “Improper” Hyperbolic Crosses”, Mat. Zametki, 93:3 (2013), 466–476; Math. Notes, 93:3 (2013), 487–496
Linking options:
https://www.mathnet.ru/eng/mzm8458https://doi.org/10.4213/mzm8458 https://www.mathnet.ru/eng/mzm/v93/i3/p466
|
Statistics & downloads: |
Abstract page: | 417 | Full-text PDF : | 168 | References: | 61 | First page: | 25 |
|