Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1979, Volume 26, Issue 3, Pages 465–474 (Mi mzm8428)  

Epimorphic period mapping for $K3$-surfaces that can be represented as double planes

A. N. Todorov

M. V. Lomonosov Moscow State University
Received: 26.12.1975
English version:
Mathematical Notes, 1979, Volume 26, Issue 3, Pages 723–727
DOI: https://doi.org/10.1007/BF01138682
Bibliographic databases:
UDC: 519.4
Language: Russian
Citation: A. N. Todorov, “Epimorphic period mapping for $K3$-surfaces that can be represented as double planes”, Mat. Zametki, 26:3 (1979), 465–474; Math. Notes, 26:3 (1979), 723–727
Citation in format AMSBIB
\Bibitem{Tod79}
\by A.~N.~Todorov
\paper Epimorphic period mapping for $K3$-surfaces that can be represented as double planes
\jour Mat. Zametki
\yr 1979
\vol 26
\issue 3
\pages 465--474
\mathnet{http://mi.mathnet.ru/mzm8428}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=549288}
\zmath{https://zbmath.org/?q=an:0456.14021}
\transl
\jour Math. Notes
\yr 1979
\vol 26
\issue 3
\pages 723--727
\crossref{https://doi.org/10.1007/BF01138682}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979JU52100015}
Linking options:
  • https://www.mathnet.ru/eng/mzm8428
  • https://www.mathnet.ru/eng/mzm/v26/i3/p465
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:153
    Full-text PDF :81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024