Abstract:
On a finite closed interval, we obtain the asymptotics of the eigenvalues of a differential operator of order 2m perturbed by a differential operator of order 2m−2 given by a quasidifferential expression. We also consider the case of multiple eigenvalues.
Keywords:
perturbation of a differential operator, spectrum of perturbations, quasidifferential expression, Hilbert space, Dirichlet boundary conditions, resolvent of an operator.
Citation:
È. F. Akhmerova, “Asymptotics of the Spectrum of Nonsmooth Perturbations of Differential Operators of Order 2m”, Mat. Zametki, 90:6 (2011), 833–844; Math. Notes, 90:6 (2011), 813–823
\Bibitem{Akh11}
\by \`E.~F.~Akhmerova
\paper Asymptotics of the Spectrum of Nonsmooth Perturbations of Differential Operators of Order $2m$
\jour Mat. Zametki
\yr 2011
\vol 90
\issue 6
\pages 833--844
\mathnet{http://mi.mathnet.ru/mzm8407}
\crossref{https://doi.org/10.4213/mzm8407}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2962959}
\transl
\jour Math. Notes
\yr 2011
\vol 90
\issue 6
\pages 813--823
\crossref{https://doi.org/10.1134/S0001434611110216}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298659000021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84855184955}
Linking options:
https://www.mathnet.ru/eng/mzm8407
https://doi.org/10.4213/mzm8407
https://www.mathnet.ru/eng/mzm/v90/i6/p833
This publication is cited in the following 12 articles:
E. F. Akhmerova, M. A. Rakhmatzoda, T. G. Amangildin, “Formula regulyarizovannogo sleda differentsialnogo operatora 2m-go poryadka s periodicheskimi granichnymi usloviyami”, Izv. vuzov. Matem., 2024, no. 5, 85–90
E. F. Akhmerova, M. A. Rahmatzoda, T. G. Amangildin, “Formula for Regularized Trace of 2m-Order Differential Operator with Periodic Boundary Conditions”, Russ Math., 68:5 (2024), 72
Dmitry M. Polyakov, “Spectral asymptotics and a trace formula for a fourth-order differential operator corresponding to thin film equation”, Monatsh Math, 202:1 (2023), 171
Dmitry M. Polyakov, “Spectral analysis of an even order differential operator with square integrable potential”, Math Methods in App Sciences, 46:5 (2023), 5483
Lu Chen, Guoliang Shi, Jun Yan, “On the Hochstadt–Lieberman theorem for the fourth-order binomial operator”, Journal of Mathematical Physics, 64:4 (2023)
Natalia P. Bondarenko, “SPECTRAL DATA ASYMPTOTICS FOR THE HIGHER-ORDER DIFFERENTIAL OPERATORS WITH DISTRIBUTION COEFFICIENTS”, J Math Sci, 266:5 (2022), 794
Dmitry M. Polyakov, “Sharp eigenvalue asymptotics of fourth-order differential operators”, ASY, 130:3-4 (2022), 477
N. B. Uskova, “Matrichnyi analiz spektralnykh proektorov vozmuschennykh samosopryazhennykh operatorov”, Sib. elektron. matem. izv., 16 (2019), 369–405
D. M. Polyakov, “A one-dimensional Schrödinger operator with square-integrable potential”, Siberian Math. J., 59:3 (2018), 470–485
Polyakov D.M., “Spectral properties of an even-order differential operator”, Differ. Equ., 52:8 (2016), 1098–1103
Badanin A. Korotyaev E., “Trace Formulas For Fourth Order Operators on Unit Interval, II”, Dyn. Partial Differ. Equ., 12:3 (2015), 217–239
Badanin A. Korotyaev E., “Inverse Problems and Sharp Eigenvalue Asymptotics For Euler-Bernoulli Operators”, Inverse Probl., 31:5 (2015), 055004