|
This article is cited in 3 scientific papers (total in 3 papers)
The Wiener–Hopf Integral Equation in the Supercritical Case
L. G. Arabadzhyan Armenian State Teachers' Training University named after Khachatur Abovian
Abstract:
We consider the scalar homogeneous equation
$$
S(x)=\int_0^\infty K(x-t)S(t)\,dt, \qquad x\in\mathbb R^+\equiv(0,\infty),
$$
with symmetric kernel $K$: $K(-x)=K(x)$, $x\in\mathbb R_1$ satisfying the conditions
$$
0\leqslant K\in L_1(\mathbb R^+)\cap C^{(2)}(\mathbb R^+), \qquad
\int_0^\infty K(t)\,dt>\frac12,
$$
$K'\leqslant 0$ and $0\leqslant K''\downarrow$ on $\mathbb R^+$. We prove the existence of a real solution $S$ of the equation given above with asymptotic behavior $S(x)=O(x)$ as $x\to+\infty$.
Received: 28.08.2000 Revised: 12.09.2003
Citation:
L. G. Arabadzhyan, “The Wiener–Hopf Integral Equation in the Supercritical Case”, Mat. Zametki, 76:1 (2004), 11–19; Math. Notes, 76:1 (2004), 10–17
Linking options:
https://www.mathnet.ru/eng/mzm84https://doi.org/10.4213/mzm84 https://www.mathnet.ru/eng/mzm/v76/i1/p11
|
|