Abstract:
We consider the scalar homogeneous equation
S(x)=∫∞0K(x−t)S(t)dt,x∈R+≡(0,∞),
with symmetric kernel K: K(−x)=K(x), x∈R1 satisfying the conditions
0⩽K∈L1(R+)∩C(2)(R+),∫∞0K(t)dt>12, K′⩽0 and 0⩽K″ on \mathbb R^+. We prove the existence of a real solution S of the equation given above with asymptotic behavior S(x)=O(x) as x\to+\infty.
Citation:
L. G. Arabadzhyan, “The Wiener–Hopf Integral Equation in the Supercritical Case”, Mat. Zametki, 76:1 (2004), 11–19; Math. Notes, 76:1 (2004), 10–17