Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 76, Issue 1, Pages 11–19
DOI: https://doi.org/10.4213/mzm84
(Mi mzm84)
 

This article is cited in 3 scientific papers (total in 3 papers)

The Wiener–Hopf Integral Equation in the Supercritical Case

L. G. Arabadzhyan

Armenian State Teachers' Training University named after Khachatur Abovian
Full-text PDF (193 kB) Citations (3)
References:
Abstract: We consider the scalar homogeneous equation
$$ S(x)=\int_0^\infty K(x-t)S(t)\,dt, \qquad x\in\mathbb R^+\equiv(0,\infty), $$
with symmetric kernel $K$: $K(-x)=K(x)$, $x\in\mathbb R_1$ satisfying the conditions
$$ 0\leqslant K\in L_1(\mathbb R^+)\cap C^{(2)}(\mathbb R^+), \qquad \int_0^\infty K(t)\,dt>\frac12, $$
$K'\leqslant 0$ and $0\leqslant K''\downarrow$ on $\mathbb R^+$. We prove the existence of a real solution $S$ of the equation given above with asymptotic behavior $S(x)=O(x)$ as $x\to+\infty$.
Received: 28.08.2000
Revised: 12.09.2003
English version:
Mathematical Notes, 2004, Volume 76, Issue 1, Pages 10–17
DOI: https://doi.org/10.1023/B:MATN.0000036737.74996.ef
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: L. G. Arabadzhyan, “The Wiener–Hopf Integral Equation in the Supercritical Case”, Mat. Zametki, 76:1 (2004), 11–19; Math. Notes, 76:1 (2004), 10–17
Citation in format AMSBIB
\Bibitem{Ara04}
\by L.~G.~Arabadzhyan
\paper The Wiener--Hopf Integral Equation in the Supercritical Case
\jour Mat. Zametki
\yr 2004
\vol 76
\issue 1
\pages 11--19
\mathnet{http://mi.mathnet.ru/mzm84}
\crossref{https://doi.org/10.4213/mzm84}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2099838}
\zmath{https://zbmath.org/?q=an:1058.45001}
\transl
\jour Math. Notes
\yr 2004
\vol 76
\issue 1
\pages 10--17
\crossref{https://doi.org/10.1023/B:MATN.0000036737.74996.ef}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000223760500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-4043115477}
Linking options:
  • https://www.mathnet.ru/eng/mzm84
  • https://doi.org/10.4213/mzm84
  • https://www.mathnet.ru/eng/mzm/v76/i1/p11
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024