Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1978, Volume 23, Issue 6, Pages 817–824 (Mi mzm8182)  

This article is cited in 1 scientific paper (total in 1 paper)

New formula for ln(eAeB) in terms of commutators of A and B

M. V. Mosolova

Moscow Institute of Electronic Engineering
Full-text PDF (480 kB) Citations (1)
Abstract: We establish the formula
ln(eBeA)=0tψ(eτadAeτadB)eτadAdτ(A+B),
where ψ(x)=(lnx)/(x1); here A and B are elements of a. finite-dimensional Lie algebra which satisfy certain conditions. This formula enables us, in particular, to give a simple proof of the Campbell–Hausdorff theorem. We also give a generalization of the formula to the case of an arbitrary number of factors.
Received: 02.06.1976
English version:
Mathematical Notes, 1978, Volume 23, Issue 6, Pages 448–452
DOI: https://doi.org/10.1007/BF01431425
Bibliographic databases:
UDC: 512
Language: Russian
Citation: M. V. Mosolova, “New formula for ln(eAeB) in terms of commutators of A and B”, Mat. Zametki, 23:6 (1978), 817–824; Math. Notes, 23:6 (1978), 448–452
Citation in format AMSBIB
\Bibitem{Mos78}
\by M.~V.~Mosolova
\paper New formula for $\ln(e^Ae^B)$ in terms of commutators of $A$ and $B$
\jour Mat. Zametki
\yr 1978
\vol 23
\issue 6
\pages 817--824
\mathnet{http://mi.mathnet.ru/mzm8182}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=502049}
\zmath{https://zbmath.org/?q=an:0403.46041|0394.46044}
\transl
\jour Math. Notes
\yr 1978
\vol 23
\issue 6
\pages 448--452
\crossref{https://doi.org/10.1007/BF01431425}
Linking options:
  • https://www.mathnet.ru/eng/mzm8182
  • https://www.mathnet.ru/eng/mzm/v23/i6/p817
  • This publication is cited in the following 1 articles:
    1. Alexey A. Magazev, Vitaly V. Mikheyev, Igor V. Shirokov, “Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras”, SIGMA, 11 (2015), 066, 17 pp.  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:281
    Full-text PDF :150
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025