|
Algebraic polynomial bases of space $L_p$
Z. A. Chanturiya Tbilisi State University
Abstract:
Let $\{\varphi_n\}$ be a system, close to the orthonormal complete system $\{\chi_n\}$. An estimate is obtained for the deviation of the system $\{f_n\}$, obtained from $\{\varphi_n\}$ by Schmidt's method, from the system $\{\chi_n\}$. This estimate is used to show that, in any $L_p(-1,1)$, with $p\in(1,4/3]\cup[4,\infty)$, and for any $\lambda>\pi e/4=2,\!13\dots$, there exists an orthogonal algebraic system $\{P_n(x)\}_{n=0}^\infty$, forming a basis in $L_p$ and such that $\nu_n=\deg P_n(x)\le\lambda n$ for $n>n_0(p,\lambda)$.
Received: 29.05.1976
Citation:
Z. A. Chanturiya, “Algebraic polynomial bases of space $L_p$”, Mat. Zametki, 23:2 (1978), 223–230; Math. Notes, 23:2 (1978), 123–127
Linking options:
https://www.mathnet.ru/eng/mzm8135 https://www.mathnet.ru/eng/mzm/v23/i2/p223
|
Statistics & downloads: |
Abstract page: | 171 | Full-text PDF : | 79 | First page: | 1 |
|