Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1978, Volume 23, Issue 1, Pages 137–142 (Mi mzm8127)  

This article is cited in 1 scientific paper (total in 1 paper)

Application of the coefficient of ergodicity in the estimation of the spectral radius of real matrices

Yu. A. Pykh

Agrophysics Scientific-Research Institute, V. I. Lenin All-Union Academy of Agricultural Sciences, USSR
Full-text PDF (399 kB) Citations (1)
Abstract: It is shown that every real matrix $A$ can be put in correspondence with a certain stochastic matrix $P$ in such a way that the coefficient of ergodicity $\alpha(P)$ of the matrix $P$ enables us to give an estimate of the spectral radius of the matrix $A$. This estimate takes into account the signs of the elements of $A$, which makes it in many cases more accurate than the generally known estimates. In the case where one of the characteristic values of the matrix $A$ and the characteristic vector corresponding to it are known, an estimate of the localization of the remaining characteristic values of the matrix $A$ is obtained.
Received: 04.12.1975
English version:
Mathematical Notes, 1978, Volume 23, Issue 1, Pages 74–76
DOI: https://doi.org/10.1007/BF01104891
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: Yu. A. Pykh, “Application of the coefficient of ergodicity in the estimation of the spectral radius of real matrices”, Mat. Zametki, 23:1 (1978), 137–142; Math. Notes, 23:1 (1978), 74–76
Citation in format AMSBIB
\Bibitem{Pyk78}
\by Yu.~A.~Pykh
\paper Application of the coefficient of ergodicity in the estimation of the spectral radius of real matrices
\jour Mat. Zametki
\yr 1978
\vol 23
\issue 1
\pages 137--142
\mathnet{http://mi.mathnet.ru/mzm8127}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=488302}
\zmath{https://zbmath.org/?q=an:0405.15014|0385.15009}
\transl
\jour Math. Notes
\yr 1978
\vol 23
\issue 1
\pages 74--76
\crossref{https://doi.org/10.1007/BF01104891}
Linking options:
  • https://www.mathnet.ru/eng/mzm8127
  • https://www.mathnet.ru/eng/mzm/v23/i1/p137
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:286
    Full-text PDF :117
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024