Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1978, Volume 23, Issue 1, Pages 105–112 (Mi mzm8123)  

Spherical multipliers

V. Z. Meshkov

M. V. Lomonosov Moscow State University
Abstract: It is proven in the paper that if function $f(x)\in L^p(R^n)$, where $1/p>1/2+1/(n+1)$, then the restriction of the Fourier transform $\widehat{f}(\xi)$ to the unit sphere $S^{n-1}$ lies in $L^2(S^{n-1})$. As was shown by Fefferman [1], it follows from this that, when $\alpha>(n-1)/(2(n+1))$, the Riesz–Bochner multiplieragr acts in $L^p(R^n)$, if $(n-1-2\alpha)/(2n)<1/p<(n+1+2\alpha)/(2n)$.
Received: 26.06.1974
English version:
Mathematical Notes, 1978, Volume 23, Issue 1, Pages 58–62
DOI: https://doi.org/10.1007/BF01104887
Bibliographic databases:
UDC: 517
Language: Russian
Citation: V. Z. Meshkov, “Spherical multipliers”, Mat. Zametki, 23:1 (1978), 105–112; Math. Notes, 23:1 (1978), 58–62
Citation in format AMSBIB
\Bibitem{Mes78}
\by V.~Z.~Meshkov
\paper Spherical multipliers
\jour Mat. Zametki
\yr 1978
\vol 23
\issue 1
\pages 105--112
\mathnet{http://mi.mathnet.ru/mzm8123}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=487266}
\zmath{https://zbmath.org/?q=an:0405.42009|0387.42005}
\transl
\jour Math. Notes
\yr 1978
\vol 23
\issue 1
\pages 58--62
\crossref{https://doi.org/10.1007/BF01104887}
Linking options:
  • https://www.mathnet.ru/eng/mzm8123
  • https://www.mathnet.ru/eng/mzm/v23/i1/p105
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:188
    Full-text PDF :97
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024