Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1977, Volume 22, Issue 5, Pages 745–758 (Mi mzm8096)  

This article is cited in 4 scientific papers (total in 4 papers)

Inequalities for the distribution of a sum of functions of independent random variables

A. M. Zubkov

V. A. Steklov Mathematical Institute, USSR Academy of Sciences
Full-text PDF (784 kB) Citations (4)
Abstract: Let ξ=ni1,,ir=1fi1,,ir=1(ζi1,,ir=1) where ζ1,,ζn are independent random variables and the fi1,,ir=1 are functions (e.g., taking the values 0 and 1). For cases when “almost all” the summands forming ξ are equal to 0 with a probability close to 1, estimates from above and below are obtained for the quantity P{ξ=0}, as well as upper estimates for the distance in variation between the distribution ξ, and the distribution of the “approximating” sum of independent random variables.
Received: 03.03.1977
English version:
Mathematical Notes, 1977, Volume 22, Issue 5, Pages 906–914
DOI: https://doi.org/10.1007/BF01098356
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: A. M. Zubkov, “Inequalities for the distribution of a sum of functions of independent random variables”, Mat. Zametki, 22:5 (1977), 745–758; Math. Notes, 22:5 (1977), 906–914
Citation in format AMSBIB
\Bibitem{Zub77}
\by A.~M.~Zubkov
\paper Inequalities for the distribution of a~sum of functions of independent random variables
\jour Mat. Zametki
\yr 1977
\vol 22
\issue 5
\pages 745--758
\mathnet{http://mi.mathnet.ru/mzm8096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=471039}
\zmath{https://zbmath.org/?q=an:0381.60018}
\transl
\jour Math. Notes
\yr 1977
\vol 22
\issue 5
\pages 906--914
\crossref{https://doi.org/10.1007/BF01098356}
Linking options:
  • https://www.mathnet.ru/eng/mzm8096
  • https://www.mathnet.ru/eng/mzm/v22/i5/p745
  • This publication is cited in the following 4 articles:
    1. V. G. Mikhailov, A. M. Shoitov, A. V. Volgin, “On Series of $H$-Equivalent Tuples in Markov Chains”, Proc. Steklov Inst. Math., 316 (2022), 254–267  mathnet  crossref  crossref
    2. V. A. Kopyttsev, V. G. Mikhailov, “Method of Moments and Sums of Random Indicators”, Proc. Steklov Inst. Math., 316 (2022), 220–232  mathnet  crossref  crossref  mathscinet
    3. “Reviews amd Bibliography”, Theory Probab. Appl., 39:4 (1995), 720  crossref
    4. A. M. Zubkov, V. G. Mihaǐlov, “On the repetitions of $s$-tuples in a sequence of independent trials”, Theory Probab. Appl., 24:2 (1979), 269–282  mathnet  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:333
    Full-text PDF :155
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025