Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1977, Volume 22, Issue 5, Pages 711–728 (Mi mzm8094)  

Order of growth of the degrees of a polynomial basis of a space of continuous functions

V. N. Temlyakov

V. A. Steklov Mathematical Institute, USSR Academy of Sciences
Abstract: The problem under consideration is the one posed independently by C. Foias and I. Singer and by P. L. Ul'yanov concerning the minimal growth of the degrees $\nu_n$ of a polynomial basis $\{t_n(x)\}_0^\infty$ of a space of continuous functions. It is shown that there exist an absolute constant $C$ and a polynomial basis $\{t_n(x)\}_0^\infty$ such that
$$ \nu_n\le C(n\ln^+\ln(n+1)+1),\quad n=0,1,2,\dots $$
The feasibility of the method employed is also considered.
Received: 28.01.1977
English version:
Mathematical Notes, 1977, Volume 22, Issue 5, Pages 888–898
DOI: https://doi.org/10.1007/BF01098354
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. N. Temlyakov, “Order of growth of the degrees of a polynomial basis of a space of continuous functions”, Mat. Zametki, 22:5 (1977), 711–728; Math. Notes, 22:5 (1977), 888–898
Citation in format AMSBIB
\Bibitem{Tem77}
\by V.~N.~Temlyakov
\paper Order of growth of the degrees of a~polynomial basis of a~space of continuous functions
\jour Mat. Zametki
\yr 1977
\vol 22
\issue 5
\pages 711--728
\mathnet{http://mi.mathnet.ru/mzm8094}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=493295}
\zmath{https://zbmath.org/?q=an:0373.46025}
\transl
\jour Math. Notes
\yr 1977
\vol 22
\issue 5
\pages 888--898
\crossref{https://doi.org/10.1007/BF01098354}
Linking options:
  • https://www.mathnet.ru/eng/mzm8094
  • https://www.mathnet.ru/eng/mzm/v22/i5/p711
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024