Abstract:
The question of the convergence of expansions in the eigenfunctions of a differential operator with discontinuous coefficients at a point x0 of discontinuity of the coefficients is studied. Given an arbitrary function f(x) in the class L2, a corresponding function ˜fx0(x) is constructed which is such that at the point x0 the eigenfunction expansion of f(x) diverges with the expansion of ˜fx0(x) into a Fourier trigonometric series.
Citation:
V. A. Il'in, “Convergence of eigenfunction expansions at points of discontinuity of the coefficients of a differential operator”, Mat. Zametki, 22:5 (1977), 679–698; Math. Notes, 22:5 (1977), 870–882
\Bibitem{Ili77}
\by V.~A.~Il'in
\paper Convergence of eigenfunction expansions at points of discontinuity of the coefficients of a~differential operator
\jour Mat. Zametki
\yr 1977
\vol 22
\issue 5
\pages 679--698
\mathnet{http://mi.mathnet.ru/mzm8092}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=499820}
\zmath{https://zbmath.org/?q=an:0364.34011}
\transl
\jour Math. Notes
\yr 1977
\vol 22
\issue 5
\pages 870--882
\crossref{https://doi.org/10.1007/BF01098352}
Linking options:
https://www.mathnet.ru/eng/mzm8092
https://www.mathnet.ru/eng/mzm/v22/i5/p679
This publication is cited in the following 21 articles:
Nurmukhamed Abdyrakhimov, Umbetkul Koilyshov, “Solution of the heat equation with a discontinuous coefficient with nonlocal boundary conditions by the Fourier method”, KMJ, 24:4 (2025), 63
S. I. Mitrokhin, “Spektralnye svoistva differentsialnogo operatora chetnogo poryadka s razryvnoi vesovoi funktsiei”, Vestnik rossiiskikh universitetov. Matematika, 27:137 (2022), 37–57
S. I. Mitrokhin, “Regulyarizovannyi sled mnogotochechnoi kraevoi zadachi s razryvnoi vesovoi funktsiei”, Vladikavk. matem. zhurn., 24:1 (2022), 65–86
S. I. Mitrokhin, “Ob asimptotike spektra differentsialnogo operatora chetnogo poryadka s potentsialom delta-funktsiei”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 25:4 (2021), 634–662
S. I. Mitrokhin, “Ob izuchenii spektra semeistva differentsialnykh operatorov, potentsialy kotorykh skhodyatsya k delta-funktsii Diraka”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2021, no. 1, 20–38
S. I. Mitrokhin, “Asimptotika spektra differentsialnogo operatora chetnogo poryadka s razryvnoi vesovoi funktsiei”, Zhurnal SVMO, 22:1 (2020), 48–70
S. I. Mitrokhin, “Ob asimptotike spektra differentsialnogo operatora chetnogo poryadka, potentsialom kotorogo yavlyaetsya delta-funktsiya”, Zhurnal SVMO, 22:3 (2020), 280–305
S. I. Mitrokhin, “Ob issledovanii spektralnykh svoistv differentsialnykh operatorov s gladkoi vesovoi funktsiei”, Vestnik rossiiskikh universitetov. Matematika, 25:129 (2020), 25–47
I. S. Lomov, “Spektralnyi metod Ilina ustanovleniya svoistv bazisnosti i ravnomernoi skhodimosti biortogonalnykh razlozhenii na konechnom intervale”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 19:1 (2019), 34–58
S. I. Mitrokhin, “Asymptotic of eigenvalues of differential operator with alternating weight function”, Russian Math. (Iz. VUZ), 62:6 (2018), 27–42
S. I. Mitrokhin, “Asymptotics of eigenvalues of fourth order differential operator with alternating weight function”, Moscow University Mathematics Bulletin, 73:6 (2018), 254–265
S. I. Mitrokhin, “O spektralnykh svoistvakh semeistva differentsialnogo operatora chetnogo poryadka s summiruemym potentsialom”, Matematicheskaya fizika i kompyuternoe modelirovanie, 21:2 (2018), 13–26
S. I. Mitrokhin, “Ob izuchenii spektralnykh svoistv differentsialnykh operatorov chetnogo poryadka s razryvnoi vesovoi funktsiei”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 23:121 (2018), 74–99
S. I. Mitrokhin, “Asymptotics of the spectrum of family functional-differential operators with summable potential”, J. Math. Sci., 253:3 (2021), 419–443
S. I. Mitrokhin, “Mnogotochechnye differentsialnye operatory: «rasscheplenie» kratnykh v glavnom sobstvennykh znachenii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 17:1 (2017), 5–18
S. I. Mitrokhin, “Ob effekte «rasschepleniya» dlya mnogotochechnykh differentsialnykh operatorov s summiruemym potentsialom”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 21:2 (2017), 249–270
S. I. Mitrokhin, “Study of differential operator with summable potential and discontinuous weight function”, Ufa Math. J., 9:4 (2017), 72–84
S. I. Mitrokhin, “Spectral properties of the family of even order differential operators with a summable potential”, Moscow University Mathematics Bulletin, 72:4 (2017), 137–148
S. I. Mitrokhin, “Asymptotics of spectrum of multipoint differential operators with summable potential”, J. Math. Sci., 231:2 (2018), 243–254
S. I. Mitrokhin, “Ob asimptotike sobstvennykh znachenii modelnoi kraevoi zadachi dlya semeistva differentsialnykh operatorov s summiruemym potentsialom”, Mezhdunar. nauch.-issled. zhurn., 2016, no. 10-2(52), 137–143