Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1977, Volume 22, Issue 5, Pages 621–631 (Mi mzm8086)  

This article is cited in 1 scientific paper (total in 1 paper)

Borsuk's problem

V. G. Boltyanskiia, V. P. Soltan

a V. A. Steklov Mathematical Institute, USSR Academy of Sciences
Full-text PDF (975 kB) Citations (1)
Abstract: The Borsuk number of a bounded set $F$ is the smallest natural number $k$ such that $F$ can be represented as a union of $k$ sets, the diameter of each of which is less than $\operatorname{diam}F$. In this paper we solve the problem of finding the Borsuk number of any bounded set in an arbitrary two-dimensional normed space (the solution is given in terms of the enlargement of a set to a figure of constant width). We indicate spaces for which the solution of Borsuk's problem has the same form as in the Euclidean plane.
Received: 15.09.1976
English version:
Mathematical Notes, 1977, Volume 22, Issue 5, Pages 839–844
DOI: https://doi.org/10.1007/BF01098346
Bibliographic databases:
UDC: 513.82
Language: Russian
Citation: V. G. Boltyanskii, V. P. Soltan, “Borsuk's problem”, Mat. Zametki, 22:5 (1977), 621–631; Math. Notes, 22:5 (1977), 839–844
Citation in format AMSBIB
\Bibitem{BolSol77}
\by V.~G.~Boltyanskii, V.~P.~Soltan
\paper Borsuk's problem
\jour Mat. Zametki
\yr 1977
\vol 22
\issue 5
\pages 621--631
\mathnet{http://mi.mathnet.ru/mzm8086}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=482520}
\zmath{https://zbmath.org/?q=an:0368.52010}
\transl
\jour Math. Notes
\yr 1977
\vol 22
\issue 5
\pages 839--844
\crossref{https://doi.org/10.1007/BF01098346}
Linking options:
  • https://www.mathnet.ru/eng/mzm8086
  • https://www.mathnet.ru/eng/mzm/v22/i5/p621
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025