Abstract:
The order of growth of the Lebesgue constant for a “hyperbolic cross” is found:
LR=∫T2|∑0<|ν1ν2|⩽R2e2πiνx|dx≍R1.2,R→∞.
Estimates are obtained by applying a discrete imbedding theorem. It is proved that among all convex domains in E2, the square gives rise to a Lebesgue constant with the slowest growth ln2R.
Citation:
A. A. Yudin, V. A. Yudin, “Discrete imbedding theorems and Lebesgue constants”, Mat. Zametki, 22:3 (1977), 381–394; Math. Notes, 22:3 (1977), 702–711
This publication is cited in the following 15 articles:
S. V. Konyagin, “On Pringsheim Convergence of a Subsequence of Partial Sums of a Multiple Trigonometric Fourier Series”, Proc. Steklov Inst. Math., 323 (2023), 159–172
E. Liflyand, “HYPERBOLIC LEBESGUE CONSTANTS IN DIMENSION TWO”, J Math Sci, 266:1 (2022), 4
Michael I. Ganzburg, Elijah Liflyand, Applied and Numerical Harmonic Analysis, Topics in Classical and Modern Analysis, 2019, 147
M. I. Dyachenko, “Uniform Convergence of Hyperbolic Partial Sums of Multiple Fourier Series”, Math. Notes, 76:5 (2004), 673–681
V. A. Yudin, “Multidimensional Versions of Paley's Inequality”, Math. Notes, 70:6 (2001), 860–865
Encyclopaedia of Mathematics, Supplement III, 2001, 234
O. S. Dragoshanskii, “Anisotropic norms of Dirichlet kernels and some other trigonometric polynomials”, Math. Notes, 67:5 (2000), 582–595
A. I. Kozko, “Fractional derivatives and inequalities for trigonometric polynomials in spaces with asymmetric norms”, Izv. Math., 62:6 (1998), 1189–1206
M. I. Dyachenko, “Uniform convergence of double Fourier series for classes of functions with anisotropic smoothness”, Math. Notes, 59:6 (1996), 680–686
M. I. Dyachenko, “$u$-convergence of multiple Fourier series”, Izv. Math., 59:2 (1995), 353–366
M. I. Dyachenko, “Norms of Dirichlet kernels and some other trigonometric polynomials in $L_p$-spaces”, Russian Acad. Sci. Sb. Math., 78:2 (1994), 267–282
M. I. Dyachenko, “Some problems in the theory of multiple trigonometric series”, Russian Math. Surveys, 47:5 (1992), 103–171
Luca Brandolini, “Estimates for lebesgue constants in dimension two”, Annali di Matematica pura ed applicata, 156:1 (1990), 231
È. M. Galeev, “Order estimates of derivatives of the multidimensional periodic Dirichlet $\alpha$-kernel in a mixed norm”, Math. USSR-Sb., 45:1 (1983), 31–43
Yu. N. Subbotin, “The Lebesgue constants of certain $m$-dimensional interpolation polynomials”, Math. USSR-Sb., 46:4 (1983), 561–570