|
A weighted estimate of best approximations in $L_2(\Omega)$
Yu. K. Dem'yanovich Leningrad State University
Abstract:
The best approximation $\widetilde f$ [in the space $L_2(\Omega)$] of a function $f$, satisfying a Lipschitz condition with exponent $\alpha$, $0\le\alpha\le1$, with the aid of certain spaces of local functions, dependent on a parameter $h$, is discussed. We obtain the estimate
$$
\|f-\widetilde f\|_\beta\le\widetilde C(f)h^{\min\{\alpha,\beta\}},
$$
where
$$
\|u\|_\beta=\max_{x\in\overline\Omega}|r^\beta u(x)|,\quad\beta\ge0\quad u\in C(\overline\Omega)
$$
and $r=r(x)$ is the distance of the point $x$ from the boundary of the domain $\Omega$.
Received: 12.01.1976
Citation:
Yu. K. Dem'yanovich, “A weighted estimate of best approximations in $L_2(\Omega)$”, Mat. Zametki, 22:2 (1977), 245–255; Math. Notes, 22:2 (1977), 627–633
Linking options:
https://www.mathnet.ru/eng/mzm8045 https://www.mathnet.ru/eng/mzm/v22/i2/p245
|
|