Typesetting math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 70, Issue 6, Pages 918–926
DOI: https://doi.org/10.4213/mzm803
(Mi mzm803)
 

This article is cited in 7 scientific papers (total in 7 papers)

Generalized Volume Ratios and the Banach–Mazur Distance

A. I. Khrabrov

St. Petersburg State University, Department of Mathematics and Mechanics
Full-text PDF (232 kB) Citations (7)
References:
Abstract: The classical and modified Banach–Mazur distances are studied. A relation between the modified distance and the volume ratios is established. The volume ratios are calculated for the spaces np and their sums are estimated for arbitrary finite-dimensional spaces.
Received: 28.06.2000
Revised: 20.01.2001
English version:
Mathematical Notes, 2001, Volume 70, Issue 6, Pages 838–846
DOI: https://doi.org/10.1023/A:1012920103463
Bibliographic databases:
UDC: 513.881
Language: Russian
Citation: A. I. Khrabrov, “Generalized Volume Ratios and the Banach–Mazur Distance”, Mat. Zametki, 70:6 (2001), 918–926; Math. Notes, 70:6 (2001), 838–846
Citation in format AMSBIB
\Bibitem{Khr01}
\by A.~I.~Khrabrov
\paper Generalized Volume Ratios and the Banach--Mazur Distance
\jour Mat. Zametki
\yr 2001
\vol 70
\issue 6
\pages 918--926
\mathnet{http://mi.mathnet.ru/mzm803}
\crossref{https://doi.org/10.4213/mzm803}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1887257}
\zmath{https://zbmath.org/?q=an:1048.46019}
\elib{https://elibrary.ru/item.asp?id=5024414}
\transl
\jour Math. Notes
\yr 2001
\vol 70
\issue 6
\pages 838--846
\crossref{https://doi.org/10.1023/A:1012920103463}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173100200027}
Linking options:
  • https://www.mathnet.ru/eng/mzm803
  • https://doi.org/10.4213/mzm803
  • https://www.mathnet.ru/eng/mzm/v70/i6/p918
  • This publication is cited in the following 7 articles:
    1. Galicer D., Merzbacher M., Pinasco D., “Asymptotic Estimates For the Largest Volume Ratio of a Convex Body”, Rev. Mat. Iberoam., 37:6 (2021), 2347–2372  crossref  mathscinet  isi  scopus
    2. A. I. Khrabrov, “Volume ratio for the Cartesian product of convex bodies”, St. Petersburg Math. J., 32:5 (2021), 905–916  mathnet  crossref
    3. F. L. Bakharev, “Generalization of some classical results to the case of the modified Banach–Mazur distance”, J. Math. Sci. (N. Y.), 141:5 (2007), 1517–1525  mathnet  crossref  mathscinet  zmath  elib  elib
    4. Averkov, G, “On the inequality for volume and Minkowskian thickness”, Canadian Mathematical Bulletin-Bulletin Canadien de Mathematiques, 49:2 (2006), 185  crossref  mathscinet  zmath  isi  scopus  scopus
    5. A. I. Khrabrov, “Comparison of Some Distances Between Sums of np Spaces”, Funct. Anal. Appl., 38:1 (2004), 75–77  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. Gordon, Y, “John's decomposition in the general case and applications”, Journal of Differential Geometry, 68:1 (2004), 99  crossref  mathscinet  zmath  isi  scopus
    7. A. I. Khrabrov, “Estimates of the distances between sums of the spaces np, II”, J. Math. Sci. (N. Y.), 129:4 (2005), 4040–4048  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:902
    Full-text PDF :378
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025