|
Trigonometric series with monotone coefficients
L. A. Balashov M. V. Lomonosov Moscow State University
Abstract:
Let $\{a_n\}$ be a monotonically decreasing sequence. Then each sequence $\{b_n\}$ such that $b_n\downarrow0$, $b_n\le a_n$, $n=1,2,\dots$, is a sequence of Fourier-Lebesgue coefficients with respect to the system $\{\cos nx\}$ if and only if the sequence $\sum_{n=1}^\infty\frac{a_n}n$ converges.
Received: 04.06.1974
Citation:
L. A. Balashov, “Trigonometric series with monotone coefficients”, Mat. Zametki, 22:1 (1977), 77–83; Math. Notes, 22:1 (1977), 533–536
Linking options:
https://www.mathnet.ru/eng/mzm8027 https://www.mathnet.ru/eng/mzm/v22/i1/p77
|
Statistics & downloads: |
Abstract page: | 192 | Full-text PDF : | 96 | First page: | 1 |
|