|
This article is cited in 7 scientific papers (total in 7 papers)
The intuitionistic propositional calculus with quantifiers
S. K. Sobolev V. A. Steklov Mathematical Institute, USSR Academy of Sciences
Abstract:
Let $L$ be the language of the intuitionistic propositional calculus $J$ completed by the quantifiers $\forall$ and $\exists$, and let calculus $2J$ in language $L$ contain, besides the axioms of $J$, the axioms $\forall\,x$ $B(x)\supset B(y)$ and $B(y)\supset\exists\,x$ $B(x)$. A Kripke semantics is constructed for $2J$ and a completeness theorem is proven. A result of D. Gabbay is generalized concerning the undecidability of $C2J^+$-extension of $2J$ by schemes $\exists\,x$ $(x\equiv B)$ and $\forall\,x$ $(A\vee B(x))\supset A\vee\forall\,x$ $B(x)$ specificially: the undecidability is proven of each $T$ theory in language $L$ such that $[2J]\subseteq T\subseteq[C2J^+]$ ($[2J]$ denotes the set of all theorems of calculus $2J$).
Received: 02.07.1975
Citation:
S. K. Sobolev, “The intuitionistic propositional calculus with quantifiers”, Mat. Zametki, 22:1 (1977), 69–76; Math. Notes, 22:1 (1977), 528–532
Linking options:
https://www.mathnet.ru/eng/mzm8026 https://www.mathnet.ru/eng/mzm/v22/i1/p69
|
Statistics & downloads: |
Abstract page: | 304 | Full-text PDF : | 109 | First page: | 1 |
|