Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1977, Volume 22, Issue 1, Pages 3–11 (Mi mzm8019)  

This article is cited in 13 scientific papers (total in 13 papers)

Torsion of Abelian varieties of finite characteristic

Yu. G. Zarhin

Research computer Centre of USSR Academy of Sciences
Abstract: The finiteness of the torsion of Abelian varieties with a complete real field of endomorphisms in the maximal Abelian extension of the field of definition is proven. This assertion is formally deduced from the finiteness hypothesis for isogenic Abelian varieties, proven for characteristic p>2p>2. The structure is studied of the Lie algebra of Galois groups acting in a Tate module; in particular, for fields of characteristic greater than two there is proven one-dimensionality of the center of the Lie algebra.
Received: 12.04.1976
English version:
Mathematical Notes, 1977, Volume 22, Issue 1, Pages 493–498
DOI: https://doi.org/10.1007/BF01147687
Bibliographic databases:
UDC: 512
Language: Russian
Citation: Yu. G. Zarhin, “Torsion of Abelian varieties of finite characteristic”, Mat. Zametki, 22:1 (1977), 3–11; Math. Notes, 22:1 (1977), 493–498
Citation in format AMSBIB
\Bibitem{Zar77}
\by Yu.~G.~Zarhin
\paper Torsion of Abelian varieties of finite characteristic
\jour Mat. Zametki
\yr 1977
\vol 22
\issue 1
\pages 3--11
\mathnet{http://mi.mathnet.ru/mzm8019}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=453757}
\zmath{https://zbmath.org/?q=an:0355.14018}
\transl
\jour Math. Notes
\yr 1977
\vol 22
\issue 1
\pages 493--498
\crossref{https://doi.org/10.1007/BF01147687}
Linking options:
  • https://www.mathnet.ru/eng/mzm8019
  • https://www.mathnet.ru/eng/mzm/v22/i1/p3
  • This publication is cited in the following 13 articles:
    1. Yuri Zarhin, “Abelian varieties over fields of finite characteristic”, Open Mathematics, 12:5 (2014)  crossref
    2. Marc Hindry, Nicolas Ratazzi, “Points de torsion sur les variétés abéliennes de type GSp”, J. Inst. Math. Jussieu, 11:1 (2012), 27  crossref
    3. Anna Cadoret, Akio Tamagawa, “A uniform open image theorem for ℓ-adic representations, I”, Duke Math. J., 161:13 (2012)  crossref
    4. Yu. G. Zarhin, “Endomorphisms of Abelian varieties, cyclotomic extensions and Lie algebras”, Sb. Math., 201:12 (2010), 1801–1810  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. Misha Gavrilovich, “A remark on transitivity of Galois action on the set of uniquely divisible abelian extensions in [graphic]Ext1(E(¯Q),Λ)”, K-Theory, 38:2 (2008), 135  crossref
    6. Yu. G. Zarhin, “Very simple 2-adic representations and hyperelliptic Jacobians”, Mosc. Math. J., 2:2 (2002), 403–431  mathnet  crossref  mathscinet  zmath  elib
    7. Izv. Math., 60:2 (1996), 379–389  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. S. G. Tankeev, “K3 surfaces over number fields and l-adic representations”, Math. USSR-Izv., 33:3 (1989), 575–595  mathnet  crossref  mathscinet  zmath
    9. S. G. Tankeev, “Cycles on simple Abelian varieties of prime dimension over number fields”, Math. USSR-Izv., 31:3 (1988), 527–540  mathnet  crossref  mathscinet  zmath
    10. Yu. G. Zarhin, “Endomorphisms and torsion of abelian varieties”, Duke Math. J., 54:1 (1987)  crossref
    11. Yu. G. Zarhin, “Weights of simple Lie algebras in the cohomology of algebraic varieties”, Math. USSR-Izv., 24:2 (1985), 245–281  mathnet  crossref  mathscinet  zmath
    12. Yu. G. Zarhin, “Abelian varieties, l-adic representations and SL2”, Math. USSR-Izv., 14:2 (1980), 275–288  mathnet  crossref  mathscinet  zmath  isi
    13. Y. G. Zarhin, “Abelian varieties,l-adic representations and Lie algebras”, Invent Math, 55:2 (1979), 165  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:281
    Full-text PDF :111
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025