Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1977, Volume 21, Issue 6, Pages 861–864 (Mi mzm8017)  

Radical formations

L. M. Slepova

Mogilev Technological Institute
Abstract: A formation $\mathfrak F$ is called radical (weakly $n$-radical) if it contains every group $G$ which can be represented in the form $G=M_1M_2\dots M_n$, $M_i\triangleleft G$, where the subgroups $M_i$ belong to $\mathfrak F$ (belong to $\mathfrak F$ and have pairwise prime indices). It is proved that a local formation $\mathfrak F$ is radical (weakly $n$-radical, $n\ge2$) if and only if its complete inner local screen $f$ has the following property: $f(p)$ is a radical (a weakly $n$-radical, $n\ge2$) formation for every prime number $p$.
Received: 22.10.1974
English version:
Mathematical Notes, 1977, Volume 21, Issue 6, Pages 485–486
DOI: https://doi.org/10.1007/BF01410180
Bibliographic databases:
UDC: 519.4
Language: Russian
Citation: L. M. Slepova, “Radical formations”, Mat. Zametki, 21:6 (1977), 861–864; Math. Notes, 21:6 (1977), 485–486
Citation in format AMSBIB
\Bibitem{Sle77}
\by L.~M.~Slepova
\paper Radical formations
\jour Mat. Zametki
\yr 1977
\vol 21
\issue 6
\pages 861--864
\mathnet{http://mi.mathnet.ru/mzm8017}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=486150}
\zmath{https://zbmath.org/?q=an:0398.20029|0385.20011}
\transl
\jour Math. Notes
\yr 1977
\vol 21
\issue 6
\pages 485--486
\crossref{https://doi.org/10.1007/BF01410180}
Linking options:
  • https://www.mathnet.ru/eng/mzm8017
  • https://www.mathnet.ru/eng/mzm/v21/i6/p861
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024