Abstract:
For self-adjoint differential operators in L2m(R1) of arbitrary order with periodic (m×m) matrix coefficients, a sufficient condition is obtained for the finiteness of the number of discrete levels arising in a finite spectral gap under the action of a symmetric perturbation affecting all the coefficients.
Citation:
V. I. Khrabustovskii, “The discrete spectrum of perturbed differential operators of arbitrary order with periodic matrix coefficients”, Mat. Zametki, 21:6 (1977), 829–838; Math. Notes, 21:6 (1977), 467–472
\Bibitem{Khr77}
\by V.~I.~Khrabustovskii
\paper The discrete spectrum of perturbed differential operators of arbitrary order with periodic matrix coefficients
\jour Mat. Zametki
\yr 1977
\vol 21
\issue 6
\pages 829--838
\mathnet{http://mi.mathnet.ru/mzm8013}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=458248}
\zmath{https://zbmath.org/?q=an:0399.47042}
\transl
\jour Math. Notes
\yr 1977
\vol 21
\issue 6
\pages 467--472
\crossref{https://doi.org/10.1007/BF01410176}
Linking options:
https://www.mathnet.ru/eng/mzm8013
https://www.mathnet.ru/eng/mzm/v21/i6/p829
This publication is cited in the following 2 articles:
Helge Krüger, Gerald Teschl, “Effective Prüfer angles and relative oscillation criteria”, Journal of Differential Equations, 245:12 (2008), 3823
Karl Michael Schmidt, “Relative Oscillation–Non-Oscillation Criteria for Perturbed Periodic Dirac Systems”, Journal of Mathematical Analysis and Applications, 246:2 (2000), 591