Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1977, Volume 21, Issue 5, Pages 727–736 (Mi mzm8003)  

This article is cited in 10 scientific papers (total in 10 papers)

A conditional limit theorem for a critical Branching process with immigration

V. A. Vatutin

V. A. Steklov Mathematical Institute, USSR Academy of Sciences
Abstract: The life period of a branching process with immigration begins at the moment $T$ and has length $\tau$ if the number of particles $\mu(T-0)=0$, $\mu(t)>0$ for all $T\le t<T+\tau$, $\mu(T+\tau)=0$ (the trajectories of the process are assumed to be continuous from the right). For a critical Markov branching process is obtained a limit theorem on the behavior of $\mu(t)$ under the condition that $\tau>t$ and $T=0$.
Received: 16.02.1976
English version:
Mathematical Notes, 1977, Volume 21, Issue 5, Pages 405–411
DOI: https://doi.org/10.1007/BF01788239
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: V. A. Vatutin, “A conditional limit theorem for a critical Branching process with immigration”, Mat. Zametki, 21:5 (1977), 727–736; Math. Notes, 21:5 (1977), 405–411
Citation in format AMSBIB
\Bibitem{Vat77}
\by V.~A.~Vatutin
\paper A~conditional limit theorem for a~critical Branching process with immigration
\jour Mat. Zametki
\yr 1977
\vol 21
\issue 5
\pages 727--736
\mathnet{http://mi.mathnet.ru/mzm8003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=451433}
\zmath{https://zbmath.org/?q=an:0411.60081}
\transl
\jour Math. Notes
\yr 1977
\vol 21
\issue 5
\pages 405--411
\crossref{https://doi.org/10.1007/BF01788239}
Linking options:
  • https://www.mathnet.ru/eng/mzm8003
  • https://www.mathnet.ru/eng/mzm/v21/i5/p727
  • This publication is cited in the following 10 articles:
    1. Junping Li, Juan Wang, “Extinction behavior and recurrence of n-type Markov branching–immigration processes”, Bound Value Probl, 2024:1 (2024)  crossref
    2. Doudou Li, Vladimir Vatutin, Mei Zhang, “Subcritical branching processes in random environment with immigration stopped at zero”, J. Theor. Probability, 34:2 (2021), 874–896  mathnet  crossref  isi  scopus
    3. Khrystyna Prysyazhnyk, Iryna Bazylevych, Ludmila Mitkova, Iryna Ivanochko, “Period-Life of a Branching Process with Migration and Continuous Time”, Mathematics, 9:8 (2021), 868  crossref
    4. Junping Li, Lan Cheng, Liuyan Li, “Long time behaviour for Markovian branching-immigration systems”, Discrete Event Dyn Syst, 31:1 (2021), 37  crossref
    5. Elena Dyakonova, Doudou Li, Vladimir Vatutin, Mei Zhang, “Branching processes in random environment with immigration stopped at zero”, J. Appl. Probab., 57:1 (2020), 237–249  mathnet  crossref  isi  scopus
    6. Anyue Chen, Junping Li, Jing Zhang, “Branching Collision Processes with Immigration”, Methodol Comput Appl Probab, 22:3 (2020), 1063  crossref
    7. Junping Li, Weiwei Meng, “Regularity criterion for 2-type Markov branching processes with immigration”, Statistics & Probability Letters, 121 (2017), 109  crossref
    8. AnYue Chen, Ying Lu, KaiWang Ng, HanJun Zhang, “Markov branching processes with killing and resurrection”, Sci. China Math., 59:3 (2016), 573  crossref
    9. Junping Li, Anyue Chen, Anthony G. Pakes, “Asymptotic Properties of the Markov Branching Process with Immigration”, J Theor Probab, 25:1 (2012), 122  crossref
    10. JunPing Li, AnYue Chen, “Existence, uniqueness and ergodicity of Markov branching processes with immigration and instantaneous resurrection”, Sci. China Ser. A-Math., 51:7 (2008), 1266  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:410
    Full-text PDF :113
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025