Abstract:
For any nondecreasing function h(t), given on the positive semiaxis and tending to zero as t→0, we construct an example of a perfect M-set for a Walsh system, having a zero h-measure.
\Bibitem{Skv77}
\by V.~A.~Skvortsov
\paper The $h$-measure of $M$-sets for a~Walsh system
\jour Mat. Zametki
\yr 1977
\vol 21
\issue 3
\pages 335--340
\mathnet{http://mi.mathnet.ru/mzm7961}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=487246}
\zmath{https://zbmath.org/?q=an:0403.42017|0352.42008}
\transl
\jour Math. Notes
\yr 1977
\vol 21
\issue 3
\pages 186--189
\crossref{https://doi.org/10.1007/BF01106742}
Linking options:
https://www.mathnet.ru/eng/mzm7961
https://www.mathnet.ru/eng/mzm/v21/i3/p335
This publication is cited in the following 4 articles:
M. G. Plotnikov, “On Uniqueness Sets for Multiple Walsh Series”, Math. Notes, 81:2 (2007), 234–246
N. N. Kholshchevnikova, “On the category of U-sets for series in the Walsh system”, Math. Notes, 53:5 (1993), 539–554
N. A. Bokaev, M. A. Nurkhanov, “Example of a null-series with respect to periodic multiplicative systems”, Math. Notes, 54:6 (1993), 1187–1191
A. A. Talalyan, R. I. Ovsepian, “The representation theorems of D. E. Men'shov and their impact on the development of the metric theory of functions”, Russian Math. Surveys, 47:5 (1992), 13–47