|
Asymptotics of the eigenvalues of the Dirichlet and Neumann problems for the abstract Sturm-Liouville operator
M. M. Gekhtman Daghestan State University
Abstract:
Let $A>0$ be an unbounded self-adjoint operator in a Hilbert space $H$. In the Hilbert space $H_1=L_2(0,\pi;H)$ we study the spectrum of the differential equations
\begin{gather*}
-y''(x)+Ay=\lambda y,\quad y(0)=y(\pi)=0,
\\
-y''(x)+Ay=\lambda y,\quad y'(0)=y'(\pi)=0.
\end{gather*}
We find the principal terms of the asymptotics of the functions $N(\lambda)$ for these problems and we ascertain the conditions under which they are asymptotically not equivalent.
Received: 28.01.1975
Citation:
M. M. Gekhtman, “Asymptotics of the eigenvalues of the Dirichlet and Neumann problems for the abstract Sturm-Liouville operator”, Mat. Zametki, 21:2 (1977), 209–212; Math. Notes, 21:2 (1977), 117–118
Linking options:
https://www.mathnet.ru/eng/mzm7947 https://www.mathnet.ru/eng/mzm/v21/i2/p209
|
Statistics & downloads: |
Abstract page: | 159 | Full-text PDF : | 70 | First page: | 1 |
|