Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1977, Volume 21, Issue 1, Pages 21–32 (Mi mzm7925)  

This article is cited in 4 scientific papers (total in 4 papers)

Approximation of differentiable functions by functions of large smoothness

B. E. Klots

Moscow Power Engineering Institute
Full-text PDF (828 kB) Citations (4)
Abstract: The order of the quantity δ(L)=supx1infx2x1x2Ls[0,2π] as L is studied for the classes of periodic functionsx x1˜Wnp(1), x1˜Wnq(L). Necessary and sufficient conditions under which the inequality
x(n)Lp
with the constant independent of x holds for all periodic functions x(t) with \int_0^{2\pi}x(t)\,dt=0 and x^{(m)}(t)\in L_s[0,2\pi] are found.
Received: 06.02.1975
English version:
Mathematical Notes, 1977, Volume 21, Issue 1, Pages 12–19
DOI: https://doi.org/10.1007/BF02317028
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: B. E. Klots, “Approximation of differentiable functions by functions of large smoothness”, Mat. Zametki, 21:1 (1977), 21–32; Math. Notes, 21:1 (1977), 12–19
Citation in format AMSBIB
\Bibitem{Klo77}
\by B.~E.~Klots
\paper Approximation of differentiable functions by functions of large smoothness
\jour Mat. Zametki
\yr 1977
\vol 21
\issue 1
\pages 21--32
\mathnet{http://mi.mathnet.ru/mzm7925}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=481797}
\zmath{https://zbmath.org/?q=an:0363.41015|0346.41015}
\transl
\jour Math. Notes
\yr 1977
\vol 21
\issue 1
\pages 12--19
\crossref{https://doi.org/10.1007/BF02317028}
Linking options:
  • https://www.mathnet.ru/eng/mzm7925
  • https://www.mathnet.ru/eng/mzm/v21/i1/p21
  • This publication is cited in the following 4 articles:
    1. Vitalii V. Arestov, “Approximation of differentiation operators by bounded linear operators in lebesgue spaces on the axis and related problems in the spaces of (p,q)-multipliers and their predual spaces”, Ural Math. J., 9:2 (2023), 4–27  mathnet  crossref
    2. V. V. Arestov, “The best approximation to a class of functions of several variables by another class and related extremum problems”, Math. Notes, 64:3 (1998), 279–294  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russian Math. Surveys, 51:6 (1996), 1093–1126  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. B. E. Klots, “Best linear and nonlinear approximations for smooth functions”, Funct. Anal. Appl., 12:1 (1978), 12–19  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :101
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025