Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1976, Volume 20, Issue 6, Pages 879–882 (Mi mzm7919)  

This article is cited in 1 scientific paper (total in 1 paper)

A new characterization of the Poisson distribution

V. M. Kruglov

M. V. Lomonosov Moscow State University
Full-text PDF (220 kB) Citations (1)
Abstract: In this note we show that an infinitely divisible (i.d.) distribution function $F$ is Poisson if and only if it satisfies the conditions $F(+0)>0$, for any $0<\varepsilon<1$
$$ \int_{-\infty}^{1-\varepsilon}\frac{|x|}{1+|x|}\,dF=0, $$
and for any $0<\alpha<1$
$$ \int_0^\infty e^{\alpha x\ln(x+1)}\,dF<\infty $$
Received: 23.04.1975
English version:
Mathematical Notes, 1976, Volume 20, Issue 6, Pages 1049–1051
DOI: https://doi.org/10.1007/BF01095201
Bibliographic databases:
UDC: 519
Language: Russian
Citation: V. M. Kruglov, “A new characterization of the Poisson distribution”, Mat. Zametki, 20:6 (1976), 879–882; Math. Notes, 20:6 (1976), 1049–1051
Citation in format AMSBIB
\Bibitem{Kru76}
\by V.~M.~Kruglov
\paper A~new characterization of the Poisson distribution
\jour Mat. Zametki
\yr 1976
\vol 20
\issue 6
\pages 879--882
\mathnet{http://mi.mathnet.ru/mzm7919}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=436266}
\zmath{https://zbmath.org/?q=an:0386.60021}
\transl
\jour Math. Notes
\yr 1976
\vol 20
\issue 6
\pages 1049--1051
\crossref{https://doi.org/10.1007/BF01095201}
Linking options:
  • https://www.mathnet.ru/eng/mzm7919
  • https://www.mathnet.ru/eng/mzm/v20/i6/p879
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024