Abstract:
We have obtained the exact value of the upper bound on the best approximations in the metric of $L$ on the classes $W^rH^\omega$ of functions $f\in C_{2\pi}^r$ for which $|f^{(r)}(x')-f^{(r)}(x'')|\le\omega(|x'-x''|)$ [$\omega(t)$ is the upwards-convex modulus of continuity] by subspaces of $r$-th order polynomial splines of defect 1 with respect to the partitioning $k\pi/n$.
Citation:
N. P. Korneichuk, “Best approximation by splines on classes of periodic functions in the metric of $L$”, Mat. Zametki, 20:5 (1976), 655–664; Math. Notes, 20:5 (1976), 927–933
\Bibitem{Kor76}
\by N.~P.~Korneichuk
\paper Best approximation by splines on classes of periodic functions in the metric of $L$
\jour Mat. Zametki
\yr 1976
\vol 20
\issue 5
\pages 655--664
\mathnet{http://mi.mathnet.ru/mzm7890}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=445166}
\zmath{https://zbmath.org/?q=an:0345.41007}
\transl
\jour Math. Notes
\yr 1976
\vol 20
\issue 5
\pages 927--933
\crossref{https://doi.org/10.1007/BF01146912}
Linking options:
https://www.mathnet.ru/eng/mzm7890
https://www.mathnet.ru/eng/mzm/v20/i5/p655
This publication is cited in the following 4 articles:
V. F. Babenko, N. V. Parfinovich, “On the Exact Values of the Best Approximations of Classes of Differentiable Periodic Functions by Splines”, Math. Notes, 87:5 (2010), 623–635
V. F. Babenko, N. V. Parfinovich, “Exact Values of Best Approximations for Classes of Periodic Functions by Splines of Deficiency 2”, Math. Notes, 85:4 (2009), 515–527
N. P. Korneichuk, “Best Approximation and Symmetric Decreasing Rearrangements of Functions”, Proc. Steklov Inst. Math., 232 (2001), 172–186
N. P. Korneichuk, “S. M. Nikol'skii and the development of research on approximation theory in the USSR”, Russian Math. Surveys, 40:5 (1985), 83–156