|
This article is cited in 2 scientific papers (total in 2 papers)
A Criterion for Contiguity of Quasiconcave Functions
V. I. Ovchinnikova, A. S. Titenkovb a Voronezh State University
b Kursk State University
Abstract:
Quasiconcave functions $\rho _0$ and $\rho _1$ belong to the same scale if there exist quasiconcave functions $\psi _0$ and $\psi _1$ and numbers $0<\theta _0<1$, $0<\theta _1<1$ such that $\rho _0=\psi _0^{1-\theta _0}\psi _1^{\theta _0}$ and $\rho _1=\psi _0^{1-\theta _1}\psi _1^{\theta _1}$. We establish a criterion for such functions to belong to the same scale up to equivalence. This criterion is obtained in terms of nodes of the corresponding linear-constant step-functions. It turns out that nodes must be equivalent to sequences.
Received: 03.04.2000
Citation:
V. I. Ovchinnikov, A. S. Titenkov, “A Criterion for Contiguity of Quasiconcave Functions”, Mat. Zametki, 70:5 (2001), 780–786; Math. Notes, 70:5 (2001), 708–713
Linking options:
https://www.mathnet.ru/eng/mzm789https://doi.org/10.4213/mzm789 https://www.mathnet.ru/eng/mzm/v70/i5/p780
|
Statistics & downloads: |
Abstract page: | 344 | Full-text PDF : | 189 | References: | 47 | First page: | 1 |
|