Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 70, Issue 5, Pages 780–786
DOI: https://doi.org/10.4213/mzm789
(Mi mzm789)
 

This article is cited in 2 scientific papers (total in 2 papers)

A Criterion for Contiguity of Quasiconcave Functions

V. I. Ovchinnikova, A. S. Titenkovb

a Voronezh State University
b Kursk State University
Full-text PDF (189 kB) Citations (2)
References:
Abstract: Quasiconcave functions $\rho _0$ and $\rho _1$ belong to the same scale if there exist quasiconcave functions $\psi _0$ and $\psi _1$ and numbers $0<\theta _0<1$, $0<\theta _1<1$ such that $\rho _0=\psi _0^{1-\theta _0}\psi _1^{\theta _0}$ and $\rho _1=\psi _0^{1-\theta _1}\psi _1^{\theta _1}$. We establish a criterion for such functions to belong to the same scale up to equivalence. This criterion is obtained in terms of nodes of the corresponding linear-constant step-functions. It turns out that nodes must be equivalent to sequences.
Received: 03.04.2000
English version:
Mathematical Notes, 2001, Volume 70, Issue 5, Pages 708–713
DOI: https://doi.org/10.1023/A:1012991229871
Bibliographic databases:
UDC: 517.982
Language: Russian
Citation: V. I. Ovchinnikov, A. S. Titenkov, “A Criterion for Contiguity of Quasiconcave Functions”, Mat. Zametki, 70:5 (2001), 780–786; Math. Notes, 70:5 (2001), 708–713
Citation in format AMSBIB
\Bibitem{OvcTit01}
\by V.~I.~Ovchinnikov, A.~S.~Titenkov
\paper A Criterion for Contiguity of Quasiconcave Functions
\jour Mat. Zametki
\yr 2001
\vol 70
\issue 5
\pages 780--786
\mathnet{http://mi.mathnet.ru/mzm789}
\crossref{https://doi.org/10.4213/mzm789}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1882351}
\zmath{https://zbmath.org/?q=an:1031.26012}
\elib{https://elibrary.ru/item.asp?id=5024400}
\transl
\jour Math. Notes
\yr 2001
\vol 70
\issue 5
\pages 708--713
\crossref{https://doi.org/10.1023/A:1012991229871}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173100200013}
Linking options:
  • https://www.mathnet.ru/eng/mzm789
  • https://doi.org/10.4213/mzm789
  • https://www.mathnet.ru/eng/mzm/v70/i5/p780
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:344
    Full-text PDF :189
    References:47
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024