|
A weight space invariant with respect to a singular linear operator
A. Ya. Yakubov Daghestan Polytechnical University
Abstract:
For the singular operator
$$
S_u=\int_a^b\frac{K(x,s)u(s)}{s-x}\,ds
$$
invariant weight spaces $\lambda_{\alpha,p}^\beta$ ($u(x)\in\lambda_{\alpha,p}^\beta$ if $1^0$. $u(x)\rho(x)\in H_\beta^0$, $2^0$. $\|u\|_{L_p(\rho_0)}<\infty$, $\rho(x)=(x-a)(b-x)^{1+\beta}$, $\rho_0(x)-(b-x)^{\alpha(p-1)}$, $0<\alpha$, $\beta<1$, $p>1$, $H_\beta^0$ is a Hölder space. Multiplicative inequalities of the type of Kh. Sh. Mukhtarov are also obtained.
Received: 06.03.1975
Citation:
A. Ya. Yakubov, “A weight space invariant with respect to a singular linear operator”, Mat. Zametki, 20:4 (1976), 549–558; Math. Notes, 20:4 (1976), 864–870
Linking options:
https://www.mathnet.ru/eng/mzm7877 https://www.mathnet.ru/eng/mzm/v20/i4/p549
|
Statistics & downloads: |
Abstract page: | 177 | Full-text PDF : | 65 | First page: | 1 |
|