|
This article is cited in 3 scientific papers (total in 3 papers)
Some stability properties for analytic operator functions
Yu. L. Shmul'yan Odessa Institute of Marine Engineers
Abstract:
Let $\mathfrak G$ be a connected, finite-dimensional, complex analytic manifold; let T(lambda) be an analytic function defined on $\mathfrak G$, whose values are $J$-biexpanding operators on a $J$-space $H$. Let $\mathfrak R(A)$ denote the range of $A$. The following assertions are proved: 1. The lineals $\mathfrak R(\sqrt{T(\lambda)^*JT(\lambda)-J})\equiv\mathfrak R$ and $\mathfrak R(\sqrt{T(\lambda)JT(\lambda)^*-J})\equiv\mathfrak R_*$ do not depend on $\lambda$. 2. For arbitrary $\lambda,\mu\in\mathfrak G$ we have $\mathfrak R(T(\lambda)-T(\mu))\subset\mathfrak R_*$, $\mathfrak R(T(\lambda)^*-T(\mu)^*)\subset\mathfrak R$.
Received: 19.07.1974
Citation:
Yu. L. Shmul'yan, “Some stability properties for analytic operator functions”, Mat. Zametki, 20:4 (1976), 511–520; Math. Notes, 20:4 (1976), 843–848
Linking options:
https://www.mathnet.ru/eng/mzm7871 https://www.mathnet.ru/eng/mzm/v20/i4/p511
|
|