Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1976, Volume 20, Issue 4, Pages 473–478 (Mi mzm7867)  

This article is cited in 22 scientific papers (total in 22 papers)

One class of partial sets

S. S. Marchenkov

Applied Mathematics Institute, Academy of Sciences of the USSR
Abstract: We shall establish that any semirecursive $\eta$-hyperhypersimple set has partial Turing degree.
Received: 18.06.1975
English version:
Mathematical Notes, 1976, Volume 20, Issue 4, Pages 823–825
DOI: https://doi.org/10.1007/BF01098896
Bibliographic databases:
UDC: 519
Language: Russian
Citation: S. S. Marchenkov, “One class of partial sets”, Mat. Zametki, 20:4 (1976), 473–478; Math. Notes, 20:4 (1976), 823–825
Citation in format AMSBIB
\Bibitem{Mar76}
\by S.~S.~Marchenkov
\paper One class of partial sets
\jour Mat. Zametki
\yr 1976
\vol 20
\issue 4
\pages 473--478
\mathnet{http://mi.mathnet.ru/mzm7867}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=479983}
\zmath{https://zbmath.org/?q=an:0396.03035}
\transl
\jour Math. Notes
\yr 1976
\vol 20
\issue 4
\pages 823--825
\crossref{https://doi.org/10.1007/BF01098896}
Linking options:
  • https://www.mathnet.ru/eng/mzm7867
  • https://www.mathnet.ru/eng/mzm/v20/i4/p473
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024