|
This article is cited in 20 scientific papers (total in 20 papers)
Multiple rational trigonometric sums and multiple integrals
V. N. Chubarikov M. V. Lomonosov Moscow State University
Abstract:
We obtain an estimate of the modulus of a complete multiple rational trigonometric sum:
$$
\biggl|\sum_{x_1,\dots,x_r=1}^q\exp(2\pi if(x_1,\dots,x_r)/q)\biggr|\ll q^{r-1/n+\varepsilon}
$$
where
\begin{gather*}
f(x_1,\dots,x_r)=\sum\nolimits_{0\le t_1,\dots,t_r\le n^at_1,\dots,t_r}x_1^{t_1}\dots x_r^{t_r},
\\
a_{0,\dots,0}=0,\quad(a_{0,\dots,0,1}\dots,a_{n,\dots,n},q)=1,
\end{gather*}
and an estimate of the modulus of a multiple trigonometric integral.
Received: 11.03.1976
Citation:
V. N. Chubarikov, “Multiple rational trigonometric sums and multiple integrals”, Mat. Zametki, 20:1 (1976), 61–68; Math. Notes, 20:1 (1976), 589–593
Linking options:
https://www.mathnet.ru/eng/mzm7838 https://www.mathnet.ru/eng/mzm/v20/i1/p61
|
Statistics & downloads: |
Abstract page: | 347 | Full-text PDF : | 116 | First page: | 1 |
|