|
This article is cited in 11 scientific papers (total in 11 papers)
The sharpening of the bounds on certain linear forms
A. I. Galochkin M. V. Lomonosov Moscow State University
Abstract:
Let $g_1,\dots,g_{m-1}$, $b$, $h_1,\dots,h_m$ be the integers from some imaginary quadratic field, $b\ne0$, $\max|g_i|=g$, $\max|h_j|=H\ne0$, $P_m(x)=x^m+g_{m-1}x^{m-1}+\dots+g_1x$, $P_m(x)\ne0$ for x =$x=1,2,\dots$,
$$
\psi(z)=1+\sum_{\nu=1}^\infty\Bigl[\prod_{x=1}^\nu P_m(x)\Bigr]^{-1}z^\nu.
$$
Then
$$
\Bigl|h_1\psi\Bigl(\frac1b\Bigr)+h_2\psi'\Bigl(\frac1b\Bigr)+\dots+h_m\psi^{(m-1)}\Bigl(\frac1b\Bigr)\Bigr|>CH^{1-m}\Bigl\{\frac{\ln\ln(H+2)}{\ln(H+2)}\Bigr\}^\gamma,
$$
where $\gamma=(m-1)^2g-(m-1)\operatorname{Re}g_{m-1}+m(m^2+m-4)/2$, and $C=C(b,m,g)>0$.
Received: 23.10.1975
Citation:
A. I. Galochkin, “The sharpening of the bounds on certain linear forms”, Mat. Zametki, 20:1 (1976), 35–45; Math. Notes, 20:1 (1976), 575–581
Linking options:
https://www.mathnet.ru/eng/mzm7823 https://www.mathnet.ru/eng/mzm/v20/i1/p35
|
Statistics & downloads: |
Abstract page: | 277 | Full-text PDF : | 91 | First page: | 1 |
|