|
Approximation of Dirichlet polynomials in cases of sparse exponents
Z. Sh. Karimov Bashkir State University
Abstract:
Let $0<\lambda_k\uparrow\infty$, $\sum_{k=1}^\infty\lambda_k^{-1}<\infty$, and let $\gamma$ be an analytic arc. For the Dirichlet polynomial $P(z)=\sum_1^na_ke^\lambda k^z$, in angle $E-\pi/2+\varphi_0<\arg[-(z-a)]<\pi/2-\varphi_0$, $0<\varphi<\pi/2$, $\operatorname{Re}\alpha<\beta=\max\limits_{t\in\gamma}\operatorname{Re}t$ we obtain the estimate
$$
|P(z)|<A\max_{t\in\gamma}|P(t)|,
$$
where $A$ depends only on angle $E$ $\{\lambda_k\}$. When $\gamma$ is a segment, an estimate was obtained by L. Schwartz.
Received: 05.07.1974
Citation:
Z. Sh. Karimov, “Approximation of Dirichlet polynomials in cases of sparse exponents”, Mat. Zametki, 19:5 (1976), 691–698; Math. Notes, 19:5 (1976), 415–419
Linking options:
https://www.mathnet.ru/eng/mzm7789 https://www.mathnet.ru/eng/mzm/v19/i5/p691
|
Statistics & downloads: |
Abstract page: | 170 | Full-text PDF : | 75 | First page: | 1 |
|