|
Approximation of Dirichlet polynomials in cases of sparse exponents
Z. Sh. Karimov Bashkir State University
Abstract:
Let 0<λk↑∞, ∑∞k=1λ−1k<∞, and let γ be an analytic arc. For the Dirichlet polynomial P(z)=∑n1akeλkz, in angle E−π/2+φ0<arg[−(z−a)]<π/2−φ0, 0<φ<π/2, Reα<β=maxt∈γRet we obtain the estimate
|P(z)|<Amaxt∈γ|P(t)|,
where A depends only on angle E {λk}. When γ is a segment, an estimate was obtained by L. Schwartz.
Received: 05.07.1974
Citation:
Z. Sh. Karimov, “Approximation of Dirichlet polynomials in cases of sparse exponents”, Mat. Zametki, 19:5 (1976), 691–698; Math. Notes, 19:5 (1976), 415–419
Linking options:
https://www.mathnet.ru/eng/mzm7789 https://www.mathnet.ru/eng/mzm/v19/i5/p691
|
Statistics & downloads: |
Abstract page: | 193 | Full-text PDF : | 83 | First page: | 1 |
|