Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 70, Issue 5, Pages 660–669
DOI: https://doi.org/10.4213/mzm778
(Mi mzm778)
 

This article is cited in 21 scientific papers (total in 21 papers)

Averaging for Hamiltonian Systems with One Fast Phase and Small Amplitudes

J. Brüninga, S. Yu. Dobrokhotovb, M. A. Poteryakhinc

a Humboldt University
b A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
c Russian Research Centre "Kurchatov Institute"
References:
Abstract: In this paper we consider an analytic Hamiltonian system differing from an integrable system by a small perturbation of order $\varepsilon$. The corresponding unperturbed integrable system is degenerate with proper and limit degeneracy: all variables, except two, are at rest and there is an elliptic singular point in the plane of these two variables. It is shown that by an analytic symplectic change of the variable, which is $O(\varepsilon)$-close to the identity substitution, the Hamiltonian can be reduced to a form differing only by exponentially small ($O(e^{-\operatorname{const}/\varepsilon})$) terms from the Hamiltonian possessing the following properties: all variables, except two, change slowly at a rate of order $\varepsilon$ and for the two remaining variables the origin is the point of equilibrium; moreover, the Hamiltonian depends only on the action of the system linearized about this equilibrium.
Received: 04.04.2001
English version:
Mathematical Notes, 2001, Volume 70, Issue 5, Pages 599–607
DOI: https://doi.org/10.1023/A:1012918708490
Bibliographic databases:
UDC: 517
Language: Russian
Citation: J. Brüning, S. Yu. Dobrokhotov, M. A. Poteryakhin, “Averaging for Hamiltonian Systems with One Fast Phase and Small Amplitudes”, Mat. Zametki, 70:5 (2001), 660–669; Math. Notes, 70:5 (2001), 599–607
Citation in format AMSBIB
\Bibitem{BruDobPot01}
\by J.~Br\"uning, S.~Yu.~Dobrokhotov, M.~A.~Poteryakhin
\paper Averaging for Hamiltonian Systems with One Fast Phase and Small Amplitudes
\jour Mat. Zametki
\yr 2001
\vol 70
\issue 5
\pages 660--669
\mathnet{http://mi.mathnet.ru/mzm778}
\crossref{https://doi.org/10.4213/mzm778}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1882340}
\zmath{https://zbmath.org/?q=an:1025.37038}
\elib{https://elibrary.ru/item.asp?id=5024389}
\transl
\jour Math. Notes
\yr 2001
\vol 70
\issue 5
\pages 599--607
\crossref{https://doi.org/10.1023/A:1012918708490}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000173100200002}
Linking options:
  • https://www.mathnet.ru/eng/mzm778
  • https://doi.org/10.4213/mzm778
  • https://www.mathnet.ru/eng/mzm/v70/i5/p660
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:553
    Full-text PDF :246
    References:102
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024