Abstract:
In this paper we consider an inverse problem for the differential equationu
t=uxx+q(x,t)u;t=uxx+q(x,t)u;
the problem amounts to finding the coefficient q(x,t) from the solution of a series of Cauchy problems for this equation, the solution being specified on some manifold. Our main result is a proof of a uniqueness theorem.
\Bibitem{Rom76}
\by V.~G.~Romanov
\paper An inverse problem for an equation of parabolic type
\jour Mat. Zametki
\yr 1976
\vol 19
\issue 4
\pages 595--600
\mathnet{http://mi.mathnet.ru/mzm7778}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=477523}
\zmath{https://zbmath.org/?q=an:0337.35063|0332.35056}
\transl
\jour Math. Notes
\yr 1976
\vol 19
\issue 4
\pages 360--363
\crossref{https://doi.org/10.1007/BF01156798}
Linking options:
https://www.mathnet.ru/eng/mzm7778
https://www.mathnet.ru/eng/mzm/v19/i4/p595
This publication is cited in the following 3 articles:
D. K. Durdiev, Zh. Z. Nuriddinov, “Edinstvennost zadachi opredeleniya yadra v integro-differentsialnom parabolicheskom uravnenii s peremennymi koeffitsientami”, Izv. vuzov. Matem., 2023, no. 11, 3–14
D. K. Durdiev, J. Z. Nuriddinov, “Uniqueness of the Kernel Determination Problem in a Integro-Differential Parabolic Equation with Variable Coefficients”, Russ Math., 67:11 (2023), 1
L. A. Nazarova, L. A. Nazarov, “Diagnostics of anti-seepage screen at a tailings dam in permafrost based on the solution of an inverse problem by piezometric measurement data”, J. Appl. Industr. Math., 10:1 (2016), 106–114