|
This article is cited in 1 scientific paper (total in 1 paper)
A group of transformations connected with the Markov cubic surface
V. V. Ermakov M. V. Lomonosov Moscow State University
Abstract:
Let $V$ be the surface given by the equations \begin{gather*}
x_1^2+x_2^2+x_3^2=3x_1x_2x_3;
\\
x_1>0,x_2>0,x_3>0.
\end{gather*}
Let $V(R)$ and $V(Z)$ be its real and integral points respectively, and $G$ the group of transformations generated by $t_1$,$t_2$,$t_3$, where
\begin{gather*}
t_1(x_1,x_2,x_3)=(3x_2x_3-x_1,x_2,x_3)
\\
t_2(x_1,x_2,x_3)=(x_1,3x_1x_3-x_2,x_3)
\\
t_3(x_1,x_2,x_3)=(x_1,x_2,3x_1x_2-x_3)
\end{gather*}
It is shown in this paper that $G$ acts freely on $V(Z)$. On $V(R)$, $G$ acts discretely; we construct a fundamental domain, and describe the fixed points.
Received: 02.07.1975
Citation:
V. V. Ermakov, “A group of transformations connected with the Markov cubic surface”, Mat. Zametki, 19:3 (1976), 419–428; Math. Notes, 19:3 (1976), 256–261
Linking options:
https://www.mathnet.ru/eng/mzm7760 https://www.mathnet.ru/eng/mzm/v19/i3/p419
|
|