Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1976, Volume 19, Issue 3, Pages 393–400 (Mi mzm7758)  

This article is cited in 10 scientific papers (total in 10 papers)

Abelian varieties in characteristic $p$

Yu. G. Zarhin

Scientific-Research Computing Center, Academy of Sciences of the USSR,
Abstract: In this paper Tate's finiteness conjecture for isogenies of polarized Abelian varieties in characteristic $p>2$ is proved. From this conjecture it is deduced that Tate modules are semisimple and that Tate's conjecture on the homomorphisms of Abelian varieties is valid.
Received: 30.06.1975
English version:
Mathematical Notes, 1976, Volume 19, Issue 3, Pages 240–244
DOI: https://doi.org/10.1007/BF01437858
Bibliographic databases:
UDC: 512
Language: Russian
Citation: Yu. G. Zarhin, “Abelian varieties in characteristic $p$”, Mat. Zametki, 19:3 (1976), 393–400; Math. Notes, 19:3 (1976), 240–244
Citation in format AMSBIB
\Bibitem{Zar76}
\by Yu.~G.~Zarhin
\paper Abelian varieties in characteristic $p$
\jour Mat. Zametki
\yr 1976
\vol 19
\issue 3
\pages 393--400
\mathnet{http://mi.mathnet.ru/mzm7758}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=422287}
\zmath{https://zbmath.org/?q=an:0342.14011}
\transl
\jour Math. Notes
\yr 1976
\vol 19
\issue 3
\pages 240--244
\crossref{https://doi.org/10.1007/BF01437858}
Linking options:
  • https://www.mathnet.ru/eng/mzm7758
  • https://www.mathnet.ru/eng/mzm/v19/i3/p393
  • This publication is cited in the following 10 articles:
    1. Yanshuai Qin, “On the Brauer groups of fibrations”, Math. Z., 307:1 (2024)  crossref
    2. St. Petersburg Math. J., 29:1 (2018), 81–106  mathnet  crossref  mathscinet  isi  elib
    3. Alexei N. Skorobogatov, Yuri G. Zarhin, “A Finiteness Theorem for the Brauer Group of K3 Surfaces in Odd Characteristic”, Int Math Res Notices, 2015:21 (2015), 11404  crossref
    4. Yuri Zarhin, “Abelian varieties over fields of finite characteristic”, Open Mathematics, 12:5 (2014)  crossref
    5. Nicolas Stalder, “The semisimplicity conjecture for A-motives”, Compositio Math., 146:3 (2010), 561  crossref
    6. Skorobogatov, AN, “FINITENESS THEOREM FOR THE BRAUER GROUP OF ABELIAN VARIETIES AND K3 SURFACES”, Journal of Algebraic Geometry, 17:3 (2008), 481  isi
    7. Yu. G. Zarhin, “Very simple 2-adic representations and hyperelliptic Jacobians”, Mosc. Math. J., 2:2 (2002), 403–431  mathnet  crossref  mathscinet  zmath  elib
    8. A. Silverberg, Séminaire de Théorie des Nombres, Paris, 1990–91, 1993, 221  crossref
    9. S. G. Tankeev, “On algebraic cycles on surfaces and Abelian varieties”, Math. USSR-Izv., 18:2 (1982), 349–380  mathnet  crossref  mathscinet  zmath
    10. Yu. G. Zarhin, “Abelian varieties, $l$-adic representations and $\mathrm{SL}_2$”, Math. USSR-Izv., 14:2 (1980), 275–288  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:349
    Full-text PDF :148
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025