Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1976, Volume 19, Issue 3, Pages 365–380 (Mi mzm7755)  

This article is cited in 19 scientific papers (total in 19 papers)

Direct and inverse estimates for a singular Cauchy integral along a closed curve

V. V. Salaev

Azerbaidzhan State University
Abstract: A new metric characteristic θ(δ) of rectifiable Jordan curves is introduced. We will find an estimate of the type of the Zygmund estimate for an arbitrary rectifiable closed Jordan curve in its terms. It is shown that the Plemel'–Privalov theorem on the invariance of Holder's spaces is true for the class of curves satisfying the condition θ(δ)δ, which is much wider than the class of piecewise smooth curves (the presence of cusps is admissible). The Bari–Stechkin theorem on the necessary conditions of action of a singular operator in the spaces Hω is generalized. It is shown that this theorem is valid for every curve which has a continuous tangent at least at one point and θ(δ)δ.
Received: 26.03.1975
English version:
Mathematical Notes, 1976, Volume 19, Issue 3, Pages 221–231
DOI: https://doi.org/10.1007/BF01437855
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. V. Salaev, “Direct and inverse estimates for a singular Cauchy integral along a closed curve”, Mat. Zametki, 19:3 (1976), 365–380; Math. Notes, 19:3 (1976), 221–231
Citation in format AMSBIB
\Bibitem{Sal76}
\by V.~V.~Salaev
\paper Direct and inverse estimates for a singular Cauchy integral along a~closed curve
\jour Mat. Zametki
\yr 1976
\vol 19
\issue 3
\pages 365--380
\mathnet{http://mi.mathnet.ru/mzm7755}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=410234}
\zmath{https://zbmath.org/?q=an:0351.44006|0345.44006}
\transl
\jour Math. Notes
\yr 1976
\vol 19
\issue 3
\pages 221--231
\crossref{https://doi.org/10.1007/BF01437855}
Linking options:
  • https://www.mathnet.ru/eng/mzm7755
  • https://www.mathnet.ru/eng/mzm/v19/i3/p365
  • This publication is cited in the following 19 articles:
    1. J. I. Mamedkhanov, S. Z. Jafarov, “On local properties of singular integral”, Ukr. Mat. Zhurn., 75:5 (2023), 614  crossref
    2. J. I. Mamedkhanov, S. Z. Jafarov, “On Local Properties of Singular Integrals”, Ukr Math J, 75:5 (2023), 703  crossref
    3. Ming Jin, Guangbin Ren, “Global Plemelj Formula of Slice Dirac Operator in Octonions with Complex Spine”, Complex Anal. Oper. Theory, 15:2 (2021)  crossref
    4. Lianet De la Cruz Toranzo, Ricardo Abreu Blaya, Juan Bory Reyes, “The Plemelj–Privalov theorem in polyanalytic function theory”, Journal of Mathematical Analysis and Applications, 463:2 (2018), 517  crossref
    5. Juan Bory-Reyes, Lianet De la Cruz-Toranzo, Ricardo Abreu-Blaya, “Singular Integral Operator Involving Higher Order Lipschitz Classes”, Mediterr. J. Math., 14:2 (2017)  crossref
    6. J. I. Mamedkhanov, “The Problem of Approximation in Mean on Arcs in the Complex Plane”, Math. Notes, 99:5 (2016), 697–710  mathnet  crossref  crossref  mathscinet  isi  elib
    7. Ricardo Abreu Blaya, Juan Bory Reyes, Boris Kats, “Cauchy integral and singular integral operator over closed Jordan curves”, Monatsh Math, 176:1 (2015), 1  crossref
    8. R. M. Rzaev, “Properties of singular integrals in terms of maximal functions measuring smoothness”, Eurasian Math. J., 4:3 (2013), 107–119  mathnet
    9. Jaroslav Drobek, “On estimate for the modulus of continuity of the Cauchy-type integral having a Lipschitz-continuous density”, Mathematica Slovaca, 63:1 (2013), 83  crossref
    10. S. A. Plaksa, V. S. Shpakivskyi, “Limiting values of the Cauchy type integral in a three-dimensional harmonic algebra”, Eurasian Math. J., 3:2 (2012), 120–128  mathnet  mathscinet  zmath
    11. Dzh. I. Mamedkhanov, “O neravenstvakh raznykh metrik tipa S. M. Nikolskogo”, Tr. IMM UrO RAN, 18, no. 4, 2012, 240–248  mathnet  elib
    12. Ricardo Abreu Blaya, Juan Bory Reyes, Tania Moreno García, “The Plemelj–Privalov theorem in Clifford analysis”, Comptes Rendus. Mathématique, 347:5-6 (2009), 223  crossref
    13. Igor Pritsker, “How to Find a Measure from its Potential”, Comput. Methods Funct. Theory, 8:2 (2008), 597  crossref
    14. Boris A. Kats, “The Refined Metric Dimension with Applications”, Comput. Methods Funct. Theory, 7:1 (2007), 77  crossref
    15. Ricardo Abreu Blaya, Dixan Peña Peña†, Juan Bory Reyes‡, “Conjugate hyperharmonic functions and cauchy type integrals in douglis analysis”, Complex Variables, Theory and Application: An International Journal, 48:12 (2003), 1023  crossref
    16. E. G. Guseinov, “The Plemelj–Privalov theorem for generalized Hölder classes”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 165–182  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    17. T. S. Salimov, “The A-integral and boundary values of analytic functions”, Math. USSR-Sb., 64:1 (1989), 23–39  mathnet  crossref  mathscinet  zmath
    18. E. G. Guseinov, “Singular integrals in spaces of functions summable with a monotone weight”, Math. USSR-Sb., 60:1 (1988), 29–46  mathnet  crossref  mathscinet  zmath
    19. R. K. Seifullaev, “The Riemann boundary value problem on a nonsmooth open curve”, Math. USSR-Sb., 40:2 (1981), 135–148  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:355
    Full-text PDF :174
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025