Abstract:
A new metric characteristic θ(δ) of rectifiable Jordan curves is introduced. We will find an estimate of the type of the Zygmund estimate for an arbitrary rectifiable closed Jordan curve in its terms. It is shown that the Plemel'–Privalov theorem on the invariance of Holder's spaces is true for the class of curves satisfying the condition θ(δ)∼δ, which is much wider than the class of piecewise smooth curves (the presence of cusps is admissible). The Bari–Stechkin theorem on the necessary conditions of action of a singular operator in the spaces Hω is generalized. It is shown that this theorem is valid for every curve which has a continuous tangent at least at one point and θ(δ)∼δ.
Citation:
V. V. Salaev, “Direct and inverse estimates for a singular Cauchy integral along a closed curve”, Mat. Zametki, 19:3 (1976), 365–380; Math. Notes, 19:3 (1976), 221–231
\Bibitem{Sal76}
\by V.~V.~Salaev
\paper Direct and inverse estimates for a singular Cauchy integral along a~closed curve
\jour Mat. Zametki
\yr 1976
\vol 19
\issue 3
\pages 365--380
\mathnet{http://mi.mathnet.ru/mzm7755}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=410234}
\zmath{https://zbmath.org/?q=an:0351.44006|0345.44006}
\transl
\jour Math. Notes
\yr 1976
\vol 19
\issue 3
\pages 221--231
\crossref{https://doi.org/10.1007/BF01437855}
Linking options:
https://www.mathnet.ru/eng/mzm7755
https://www.mathnet.ru/eng/mzm/v19/i3/p365
This publication is cited in the following 19 articles:
J. I. Mamedkhanov, S. Z. Jafarov, “On local properties of singular integral”, Ukr. Mat. Zhurn., 75:5 (2023), 614
J. I. Mamedkhanov, S. Z. Jafarov, “On Local Properties of Singular Integrals”, Ukr Math J, 75:5 (2023), 703
Ming Jin, Guangbin Ren, “Global Plemelj Formula of Slice Dirac Operator in Octonions with Complex Spine”, Complex Anal. Oper. Theory, 15:2 (2021)
Lianet De la Cruz Toranzo, Ricardo Abreu Blaya, Juan Bory Reyes, “The Plemelj–Privalov theorem in polyanalytic function theory”, Journal of Mathematical Analysis and Applications, 463:2 (2018), 517
Juan Bory-Reyes, Lianet De la Cruz-Toranzo, Ricardo Abreu-Blaya, “Singular Integral Operator Involving Higher Order Lipschitz Classes”, Mediterr. J. Math., 14:2 (2017)
J. I. Mamedkhanov, “The Problem of Approximation in Mean on Arcs in the Complex Plane”, Math. Notes, 99:5 (2016), 697–710
Ricardo Abreu Blaya, Juan Bory Reyes, Boris Kats, “Cauchy integral and singular integral operator over closed Jordan curves”, Monatsh Math, 176:1 (2015), 1
R. M. Rzaev, “Properties of singular integrals in terms of maximal functions measuring smoothness”, Eurasian Math. J., 4:3 (2013), 107–119
Jaroslav Drobek, “On estimate for the modulus of continuity of the Cauchy-type integral having a Lipschitz-continuous density”, Mathematica Slovaca, 63:1 (2013), 83
S. A. Plaksa, V. S. Shpakivskyi, “Limiting values of the Cauchy type integral in a three-dimensional harmonic algebra”, Eurasian Math. J., 3:2 (2012), 120–128
Dzh. I. Mamedkhanov, “O neravenstvakh raznykh metrik tipa S. M. Nikolskogo”, Tr. IMM UrO RAN, 18, no. 4, 2012, 240–248
Ricardo Abreu Blaya, Juan Bory Reyes, Tania Moreno García, “The Plemelj–Privalov theorem in Clifford analysis”, Comptes Rendus. Mathématique, 347:5-6 (2009), 223
Igor Pritsker, “How to Find a Measure from its Potential”, Comput. Methods Funct. Theory, 8:2 (2008), 597
Boris A. Kats, “The Refined Metric Dimension with Applications”, Comput. Methods Funct. Theory, 7:1 (2007), 77
Ricardo Abreu Blaya, Dixan Peña Peña†, Juan Bory Reyes‡, “Conjugate hyperharmonic functions and cauchy type integrals in douglis analysis”, Complex Variables, Theory and Application: An International Journal, 48:12 (2003), 1023
E. G. Guseinov, “The Plemelj–Privalov theorem for generalized Hölder classes”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 165–182
T. S. Salimov, “The A-integral and boundary values of analytic functions”, Math. USSR-Sb., 64:1 (1989), 23–39
E. G. Guseinov, “Singular integrals in spaces of functions summable with a monotone weight”, Math. USSR-Sb., 60:1 (1988), 29–46
R. K. Seifullaev, “The Riemann boundary value problem on a nonsmooth open curve”, Math. USSR-Sb., 40:2 (1981), 135–148