Abstract:
For certain classes of functions (all functions are defined on a Jordan measurable set G) defined by a majorant on the modulus of continuity, we find an asymptotically sharp bound for the remainder of an optimal quadrature formula of the form
∫Gf(x)dx≈m∑ν=1cνf(xν)
When the given majorant of the modulus of continuity is tα and the nonnegative function P(x) is such that for any nonnegative numbera the set {x∈G:P(x)⩽a} is Jordan measurable, then we also find an asymptotically sharp bound for the remainder of an optimal quadrature formula of the form
∫GP(x)f(x)dx≈m∑ν=1cνf(xν)
Citation:
V. F. Babenko, “Asymptotically sharp bounds for the remainder for the best quadrature formulas for several classes of functions”, Mat. Zametki, 19:3 (1976), 313–322; Math. Notes, 19:3 (1976), 187–193
\Bibitem{Bab76}
\by V.~F.~Babenko
\paper Asymptotically sharp bounds for the remainder for the best quadrature formulas for several classes of functions
\jour Mat. Zametki
\yr 1976
\vol 19
\issue 3
\pages 313--322
\mathnet{http://mi.mathnet.ru/mzm7750}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=417647}
\zmath{https://zbmath.org/?q=an:0333.41024}
\transl
\jour Math. Notes
\yr 1976
\vol 19
\issue 3
\pages 187--193
\crossref{https://doi.org/10.1007/BF01437850}
Linking options:
https://www.mathnet.ru/eng/mzm7750
https://www.mathnet.ru/eng/mzm/v19/i3/p313
This publication is cited in the following 11 articles:
O. V. Kovalenko, “On optimization of cubature formulae for Sobolev classes of functions defined on star domains”, Mat. Stud., 61:1 (2024), 84
Babenko V., Kovalenko O., Polishchuk M., “Optimal Recovery of Operators in Function l-Spaces”, Anal. Math., 47:1 (2021), 13–32
Oleg Kovalenko, “On optimal recovery of integrals of random processes”, Journal of Mathematical Analysis and Applications, 487:1 (2020), 123949
Borodachov S., “Optimal Recovery of Three Times Differentiable Functions on a Convex Polytope Inscribed in a Sphere”, J. Approx. Theory, 234 (2018), 51–63
V. F. Babenko, V. V. Babenko, M. V. Polishchuk, “On the Optimal Recovery of Integrals of Set-Valued Functions”, Ukr Math J, 67:9 (2016), 1306
Erich Novak, Springer Proceedings in Mathematics & Statistics, 163, Monte Carlo and Quasi-Monte Carlo Methods, 2016, 161
V.F. Babenko, S.V. Borodachov, D.S. Skorokhodov, “Optimal cubature formulas for tensor products of certain classes of functions”, Journal of Complexity, 27:6 (2011), 519
Proc. Steklov Inst. Math., 225 (1999), 148–155
Michael L. Stein, “Locally lattice sampling designs for isotropic random fields”, Ann. Statist., 23:6 (1995)
N. P. Korneichuk, “S. M. Nikol'skii and the development of research on approximation theory in the USSR”, Russian Math. Surveys, 40:5 (1985), 83–156
Arthur G. Werschulz, “Counterexamples in optimal quadrature”, Aeq. Math., 29:1 (1985), 183