Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1976, Volume 19, Issue 2, Pages 291–297 (Mi mzm7748)  

The Kleinfeld identities in generalized accessible rings

G. V. Dorofeev

Moscow State Pedagogical Institute
Abstract: It is proved that the identities $([x,y]^4,z,t)=([x,y]^2,z,t)[x,y]=[x,y]([x,y]^2,z,t)=0$, known in the theory of alternative rings as the Kleinfeld identities, are fulfilled in every generalized accessible ring of characteristic different from 2 and 3. These identities allow us to construct central and kernel functions in the variety of generalized accessible rings. It is also proved that in a free generalized accessible and a free alternative ring with more than three generators the Kleinfeld element $([x,y]^2,z,t)$ is nilpotent of index 2.
Received: 25.04.1975
English version:
Mathematical Notes, 1976, Volume 19, Issue 2, Pages 172–175
DOI: https://doi.org/10.1007/BF01098752
Bibliographic databases:
UDC: 519.48
Language: Russian
Citation: G. V. Dorofeev, “The Kleinfeld identities in generalized accessible rings”, Mat. Zametki, 19:2 (1976), 291–297; Math. Notes, 19:2 (1976), 172–175
Citation in format AMSBIB
\Bibitem{Dor76}
\by G.~V.~Dorofeev
\paper The Kleinfeld identities in generalized accessible rings
\jour Mat. Zametki
\yr 1976
\vol 19
\issue 2
\pages 291--297
\mathnet{http://mi.mathnet.ru/mzm7748}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=409571}
\zmath{https://zbmath.org/?q=an:0328.17001|0326.17001}
\transl
\jour Math. Notes
\yr 1976
\vol 19
\issue 2
\pages 172--175
\crossref{https://doi.org/10.1007/BF01098752}
Linking options:
  • https://www.mathnet.ru/eng/mzm7748
  • https://www.mathnet.ru/eng/mzm/v19/i2/p291
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:167
    Full-text PDF :81
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024