Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2001, Volume 70, Issue 4, Pages 613–620
DOI: https://doi.org/10.4213/mzm773
(Mi mzm773)
 

This article is cited in 10 scientific papers (total in 10 papers)

Uniform Convergence of Trigonometric Series with Rarely Changing Coefficients

S. A. Telyakovskii

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We consider the series $\sum _{k=1}^\infty a_k\sin kx$ and $\frac {a_0}2+\sum _{k=1}^\infty a_k\cos kx$ whose coefficients satisfy the condition $a_k=a_{n_m}$ for $n_{m-1}<k\le n_m$ , where the sequence $\{n_m\}$ can be expressed as the union of a finite number of lacunary sequences. The following results are obtained. If $ka_k\to0$ as $k\to\infty$, then the series $\sum _{k=1}^\infty a_k\sin kx$ is uniformly convergent. If $k|a_k|\le C$ for all $k$, then the sequence of partial sums of this series is uniformly bounded. If the series $\frac {a_0}2+\sum _{k=1}^\infty a_k\cos kx$ is convergent for $x=0$ and $ka_k\to0$ as $k\to\infty$, then this series is uniformly convergent. If the sequence of partial sums of the series $\frac {a_0}2+\sum _{k=1}^\infty a_k\cos kx$ for $x=0$ is bounded and $k|a_k|\le C$ for all $k$, then the sequence of partial sums of this series is uniformly bounded. In these assertions, conditions on the rates of decrease of the coefficients of the series are also necessary if the sequence $\{n_m\}$ is lacunary. In the general case, they are not necessary.
Received: 25.01.2001
English version:
Mathematical Notes, 2001, Volume 70, Issue 4, Pages 553–559
DOI: https://doi.org/10.1023/A:1012341122213
Bibliographic databases:
Document Type: Article
UDC: 517.518.4
Language: Russian
Citation: S. A. Telyakovskii, “Uniform Convergence of Trigonometric Series with Rarely Changing Coefficients”, Mat. Zametki, 70:4 (2001), 613–620; Math. Notes, 70:4 (2001), 553–559
Citation in format AMSBIB
\Bibitem{Tel01}
\by S.~A.~Telyakovskii
\paper Uniform Convergence of Trigonometric Series with Rarely Changing Coefficients
\jour Mat. Zametki
\yr 2001
\vol 70
\issue 4
\pages 613--620
\mathnet{http://mi.mathnet.ru/mzm773}
\crossref{https://doi.org/10.4213/mzm773}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1884198}
\zmath{https://zbmath.org/?q=an:1020.42003}
\elib{https://elibrary.ru/item.asp?id=13381733}
\transl
\jour Math. Notes
\yr 2001
\vol 70
\issue 4
\pages 553--559
\crossref{https://doi.org/10.1023/A:1012341122213}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000172164200029}
Linking options:
  • https://www.mathnet.ru/eng/mzm773
  • https://doi.org/10.4213/mzm773
  • https://www.mathnet.ru/eng/mzm/v70/i4/p613
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:594
    Full-text PDF :245
    References:72
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024