Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1976, Volume 19, Issue 1, Pages 49–62 (Mi mzm7722)  

This article is cited in 1 scientific paper (total in 1 paper)

Approximation of continuous functions by trigonometric polynomials almost everywhere

T. V. Radoslavova

V. A. Steklov Mathematical Institute, USSR Academy of Sciences
Full-text PDF (821 kB) Citations (1)
Abstract: We consider the problem of the rate of approximation of continuous $2\pi$-periodic functions of class $W^rH[\omega]_C$ by trigonometric polynomials of order $n$ on sets of total measure. We prove that when $r\ge0$, $\omega(\delta)\delta^{-1}\to\infty$ ($\delta\to0$) there exists a function $f\in W^rH[\omega]_C$ such that $\widetilde f\in W^rH[\omega]_C$ and for any sequence $\{t_n\}_{n=1}^\infty$ we have almost everywhere on $[0,2\pi]$
\begin{gather*} \varlimsup_{n\to\infty}|f(x)-t_n(x)|n^r\omega^{-1}(1/n)>C_x>0 \\ \varlimsup_{n\to\infty}|\widetilde f(x)-t_n(x)|n^r\omega^{-1}(1/n)>C_x>0 \end{gather*}
Received: 24.09.1975
English version:
Mathematical Notes, 1976, Volume 19, Issue 1, Pages 29–36
DOI: https://doi.org/10.1007/BF01147614
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: T. V. Radoslavova, “Approximation of continuous functions by trigonometric polynomials almost everywhere”, Mat. Zametki, 19:1 (1976), 49–62; Math. Notes, 19:1 (1976), 29–36
Citation in format AMSBIB
\Bibitem{Rad76}
\by T.~V.~Radoslavova
\paper Approximation of continuous functions by trigonometric polynomials almost everywhere
\jour Mat. Zametki
\yr 1976
\vol 19
\issue 1
\pages 49--62
\mathnet{http://mi.mathnet.ru/mzm7722}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=447939}
\zmath{https://zbmath.org/?q=an:0332.42003|0327.42004}
\transl
\jour Math. Notes
\yr 1976
\vol 19
\issue 1
\pages 29--36
\crossref{https://doi.org/10.1007/BF01147614}
Linking options:
  • https://www.mathnet.ru/eng/mzm7722
  • https://www.mathnet.ru/eng/mzm/v19/i1/p49
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024