Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1976, Volume 19, Issue 1, Pages 11–17 (Mi mzm7718)  

This article is cited in 3 scientific papers (total in 3 papers)

Upper bounds for the best one-sided approximation by splines of the classes WrL1

V. G. Doronina, A. A. Ligunb

a Dnepropetrovsk State University
b Dneprodzerzhinsk Industrial Institute
Full-text PDF (424 kB) Citations (3)
Abstract: In the present note we will investigate the problem of the one-sided approximation of functions by n-dimensional subspaces. In particular, we will find the exact value of the best one-sided approximation of the class WrL1 (r=1,2,) of all periodic functions f(x) of period 2π for which f(r1)(x) (f(0)(x)=f(x)) is absolutely continuous and f(r)L11 by periodic spline functions S2n,μ (μ=0,1,, n=1,2,) of period 2π, order μ, and deficiency 1.
Received: 25.12.1974
English version:
Mathematical Notes, 1976, Volume 19, Issue 1, Pages 7–10
DOI: https://doi.org/10.1007/BF01147610
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: V. G. Doronin, A. A. Ligun, “Upper bounds for the best one-sided approximation by splines of the classes WrL1”, Mat. Zametki, 19:1 (1976), 11–17; Math. Notes, 19:1 (1976), 7–10
Citation in format AMSBIB
\Bibitem{DorLig76}
\by V.~G.~Doronin, A.~A.~Ligun
\paper Upper bounds for the best one-sided approximation by splines of the classes $W^rL_1$
\jour Mat. Zametki
\yr 1976
\vol 19
\issue 1
\pages 11--17
\mathnet{http://mi.mathnet.ru/mzm7718}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=412680}
\zmath{https://zbmath.org/?q=an:0352.41026|0324.41017}
\transl
\jour Math. Notes
\yr 1976
\vol 19
\issue 1
\pages 7--10
\crossref{https://doi.org/10.1007/BF01147610}
Linking options:
  • https://www.mathnet.ru/eng/mzm7718
  • https://www.mathnet.ru/eng/mzm/v19/i1/p11
  • This publication is cited in the following 3 articles:
    1. Parfinovych V N., “Non-Symmetric Approximations of Functional Classes By Splines on the Real Line”, Carpathian Math. Publ., 13:3, SI (2021), 831–837  crossref  isi
    2. Babenko V.F., Parfinovich N.V., “NONSYMMETRIC APPROXIMATIONS OF CLASSES OF PERIODIC FUNCTIONS BY SPLINES OF DEFECT 2 AND JACKSON-TYPE INEQUALITIES”, Ukrainian Math J, 61:11 (2009), 1695–1709  crossref  isi
    3. V. A. Popov, Linear Spaces and Approximation / Lineare Räume und Approximation, 1978, 449  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :86
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025