|
This article is cited in 28 scientific papers (total in 28 papers)
Widths of Classes of Periodic Differentiable Functions in the Space $L_{2}[0,2\pi]$
M. Sh. Shabozov Institute of Mathematics, Academy of Sciences Republic of Tajikistan
Abstract:
We obtain exact values of different $n$-widths for classes of differentiable periodic functions in the space $L_{2}[0,2\pi]$ satisfying the constraint
$$
\biggl(\int_{0}^{h}\omega_{m}^{p}(f^{(r)};t)\,dt\biggr)^{1/p}\le\Phi(h),
$$
where $0<h<\infty$, $1/r<p\le2$, $r\in\mathbb{N}$, and $\omega_{m}(f^{(r)};t)$ is the modulus of continuity of $m$th order of the derivative $f^{(r)}(x)\in L_{2}[0,2\pi]$.
Keywords:
differentiable periodic function, width in the sense of Bernstein, Kolmogorov, Gelfand, the space $L_{2}[0,2\pi]$, trigonometric polynomial, Fourier series, modulus of continuity, linear operator.
Received: 09.02.2009
Citation:
M. Sh. Shabozov, “Widths of Classes of Periodic Differentiable Functions in the Space $L_{2}[0,2\pi]$”, Mat. Zametki, 87:4 (2010), 616–623; Math. Notes, 87:4 (2010), 575–581
Linking options:
https://www.mathnet.ru/eng/mzm7707https://doi.org/10.4213/mzm7707 https://www.mathnet.ru/eng/mzm/v87/i4/p616
|
Statistics & downloads: |
Abstract page: | 568 | Full-text PDF : | 215 | References: | 69 | First page: | 23 |
|