Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 87, Issue 4, Pages 616–623
DOI: https://doi.org/10.4213/mzm7707
(Mi mzm7707)
 

This article is cited in 28 scientific papers (total in 28 papers)

Widths of Classes of Periodic Differentiable Functions in the Space $L_{2}[0,2\pi]$

M. Sh. Shabozov

Institute of Mathematics, Academy of Sciences Republic of Tajikistan
References:
Abstract: We obtain exact values of different $n$-widths for classes of differentiable periodic functions in the space $L_{2}[0,2\pi]$ satisfying the constraint
$$ \biggl(\int_{0}^{h}\omega_{m}^{p}(f^{(r)};t)\,dt\biggr)^{1/p}\le\Phi(h), $$
where $0<h<\infty$, $1/r<p\le2$, $r\in\mathbb{N}$, and $\omega_{m}(f^{(r)};t)$ is the modulus of continuity of $m$th order of the derivative $f^{(r)}(x)\in L_{2}[0,2\pi]$.
Keywords: differentiable periodic function, width in the sense of Bernstein, Kolmogorov, Gelfand, the space $L_{2}[0,2\pi]$, trigonometric polynomial, Fourier series, modulus of continuity, linear operator.
Received: 09.02.2009
English version:
Mathematical Notes, 2010, Volume 87, Issue 4, Pages 575–581
DOI: https://doi.org/10.1134/S0001434610030351
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: M. Sh. Shabozov, “Widths of Classes of Periodic Differentiable Functions in the Space $L_{2}[0,2\pi]$”, Mat. Zametki, 87:4 (2010), 616–623; Math. Notes, 87:4 (2010), 575–581
Citation in format AMSBIB
\Bibitem{Sha10}
\by M.~Sh.~Shabozov
\paper Widths of Classes of Periodic Differentiable Functions in the Space~$L_{2}[0,2\pi]$
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 4
\pages 616--623
\mathnet{http://mi.mathnet.ru/mzm7707}
\crossref{https://doi.org/10.4213/mzm7707}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2762748}
\zmath{https://zbmath.org/?q=an:05791086}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 4
\pages 575--581
\crossref{https://doi.org/10.1134/S0001434610030351}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279034600035}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953965112}
Linking options:
  • https://www.mathnet.ru/eng/mzm7707
  • https://doi.org/10.4213/mzm7707
  • https://www.mathnet.ru/eng/mzm/v87/i4/p616
  • This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:568
    Full-text PDF :215
    References:69
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024